精英家教网 > 高中数学 > 题目详情

已知:函数f(x)=x3+px2+9qx+p+q+3 (x∈R)的图象关于原点对称,其中p,q是实常数.
(1)求p,q的值;
(2)确定函数f(x)在区间[-3,3]上的单调性;
(3)若当-3≤x≤3时,不等式f(x)≥10sint-49恒成立,求实数t的取值范围.

解:(1)由f(-x)=-f(x),得2px2+2(p+q+3)=0恒成立,∴p=0,q=-3.
(2)f(x)=x3-27x,取-3≤x1<x2≤3,则x12+x1x2+x22<27.
∴f(x1)-f(x2)=(x1-x2)(x12+x1x2+x22-27)>0,f(x)在[-3,3]为减函数.
(3)由(2)知f(x)在区间[-3,3]上的最小值为f(3)=-54,
∴只需f(3)=-54≥10sint-49,
,得(k∈Z).
分析:(1)利用奇函数的性质,得2px2+2(p+q+3)=0恒成立,求得p,q的值
(2)利用单调性的定义,可证明函数f(x)在区间[-3,3]上为减函数
(3)先求出函数f(x)在区间[-3,3]上的最小值,再令10sint-49比所求最小值不大,解不等式即可
点评:本题考查了函数的奇偶性、单调性和不等式恒成立问题,解题时要熟练掌握函数奇偶性、单调性定义,能准确利用函数单调性求函数值域
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)在(-∞,0)∪(0,+∞)上有意义,且在(0,+∞)上是减函数,f(1)=0,又有函数g(θ)=sin2θ+mcosθ-2m,θ∈[0,
π2
],若集合M={m|g(θ)<0},集合N={m|f[g(θ)]>0}.
(1)解不等式f(x)>0;
(2)求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为(-1,1),当x∈(0,1)时,f(x)=
2x2x+1

(1)求f(x)在(-1,1)上的解析式;
(2)判断f(x)在(0,1)上的单调性,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=xa的图象过点(
1
2
2
2
)
,则f(x)在(0,+∞)单调递

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在区间(a,b)上是减函数,证明f(x)在区间(-b,-a)上仍是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)=x3-6x2+3x+t,t∈R.
(1)①证明:a3-b3=(a-b)(a2+ab+b2
②求函数f(x)两个极值点所对应的图象上两点之间的距离;
(2)设函数g(x)=exf(x)有三个不同的极值点,求t的取值范围.

查看答案和解析>>

同步练习册答案