精英家教网 > 高中数学 > 题目详情

如图,△ABC内接于⊙O,过点A的直线交⊙O于点P,交BC的延长线于点D,且AB2AP·AD

(1)求证:ABAC

(2)如果∠ABC=60°,⊙O的半径为1,且P为弧AC的中点,求AD的长.

答案:
解析:

  (1)证明:联结BP

  ∵AB2AP·AD,∴

  ∵∠BAD=∠PAB,∴△ABD∽△APB

  ∴∠ABC=∠APB,∵∠ACB=∠APB

  ∴∠ABC=∠ACB.∴ABAC

  (2)由(1)知ABAC.∵∠ABC=60°,∴△ABC是等边三角形.

  ∴∠BAC=60°,∵P为弧AC的中点,

  ∴∠ABP=∠PACABC=30°,∴∠BAP=90°,∴BP是⊙O的直径,∴BP=2,∴APBP=1,

  在Rt△PAB中,由勾股定理得ABBP2AP2=3,∴AD=3.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,△ABC内接于圆O,AB是圆O的直径,AB=2,BC=1,设AE与平面ABC所成的角为θ,且tanθ=
3
2
,四边形DCBE为平行四边形,DC⊥平面ABC.
(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,△ABC内接于⊙O,AB=AC,直线MN切⊙O于点C,BE∥MN交AC于点E.若AB=6,BC=4,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC内接于圆柱的底面圆O,AB是圆O的直径,AB=2,BC=1,DC、EB是两条母线,且 tan∠EAB=
3
2

(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•沈阳二模)选修4-1:几何证明选讲
如图,△ABC内接于⊙O,AB是⊙O的直径,PA是过点A的直线,且∠PAC=∠ABC.
(1)求证:PA是⊙O的切线;
(2)如果弦CD交AB于点E,AC=8,CE:ED=6:5,AE:EB=2:3,求直径AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:△ABC内接于⊙O,AB=AC,直线MN切⊙O于点C,BE∥MN交AC于点E,若AB=6,BC=4,则AE的长为(  )

查看答案和解析>>

同步练习册答案