(本小题满分12分)
如图,
为圆
的直径,点
、
在圆
上,
,矩形
和圆
所在的平面互相垂直.已知
,
.
(Ⅰ)求证:平面
平面
;
(Ⅱ)求直线
与平面
所成角的大小;
(Ⅲ)当
的长为何值时,二面角
的大小为
?
解:(Ⅰ)证明:
平面
平面
,
,
平面
平面
=
,
平面
.
平面
,
,
又
为圆
的直径,
,
平面
.
平面
,
平面
平面
. …………4分
(Ⅱ)根据(Ⅰ)的证明,有
平面
,![]()
为
在
平面
上的射影,
因此,
为直线
与平面
所成的角. ………………5分
,
四边形
为等腰梯形,
过点
作
,交
于
.
,
,则
.
在
中,根据射影定理
,得
. …………7分
,
.
直线
与平面
所成角的大小为
. …………8分
(Ⅲ)设
中点为
,以
为坐标原点,
、
、
方向分别为
轴、
轴、
轴方向建立空间直角坐标系(如图)设![]()
,则点
的坐标为![]()
设平面
的法向量为
,则
,
.
即
令
,解得![]()
………………10分
取平面
的一个法向量为
,依题意
与
的夹角为![]()
,即
, 解得
(负值舍去)
因此,当
的长为
时,二面角
的大小为
.………12分
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com