精英家教网 > 高中数学 > 题目详情
(2013•肇庆一模)已知Sn是数列{an}的前n项和,且a1=1,nan+1=2Sn(n∈N*)
(1)求a2,a3,a4的值;
(2)求数列{an}的通项an
(3)设数列{bn}满足bn=
2(n+2)an
,求数列{bn}的前n项和Tn
分析:(1)在nan+1=2Sn(n∈N*)中,分别令n=1、2、3即可求得a2,a3,a4的值;
(2)累乘法:n>1时,由nan+1=2Sn①,得(n-1)an=2Sn-1②,①-②化简得nan+1=(n+1)an,即
an+1
an
=
n+1
n
(n>1),则an=a2×
a3
a2
×
a4
a3
×…×
an
an-1
,由此可得an=n(n>1),注意验证a1
(3)裂项相消法:由(2)可求得bn=
2
(n+2)n
=
1
n
-
1
n+2
,各项按此规律展开即可求得Tn
解答:解:(1)由a1=1,nan+1=2Sn(n∈N*)得,a2=2a1=2,2a3=2S2,则a3=a1+a2=3,
由3a4=2S3=2(a1+a2+a3),得a4=4;
(2)当n>1时,由nan+1=2Sn①,得(n-1)an=2Sn-1②,
①-②得nan+1-(n-1)an=2(Sn-Sn-1),化简得nan+1=(n+1)an
an+1
an
=
n+1
n
(n>1).
∴a2=2,
a3
a2
=
3
2
,…,
an
an-1
=
n
n-1

以上(n-1)个式子相乘得an=2×
3
2
×…×
n
n-1
=n
(n>1),
又a1=1,∴an=n(n∈N*)
(3)∵bn=
2
(n+2)an
=
2
(n+2)n
=
1
n
-
1
n+2

Tn=
1
1
-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n-2
-
1
n
+
1
n-1
-
1
n+1
+
1
n
-
1
n+2

=1+
1
2
-
1
n+1
-
1
n+2
=
3
2
-
2n+3
(n+1)(n+2)
点评:本题考查由数列递推式求通项公式、数列求和等知识,若数列{an}满足:
an+1
an
=f(n),则往往利用累乘法求an;若{an}为等差数列,公差d≠0,则数列{
1
anan+1
}的前n项和用裂项相消法求解,其中
1
anan+1
=
1
d
(
1
an
-
1
an+1
)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•肇庆一模)已知等差数列{an},满足a3+a9=8,则此数列的前11项的和S11=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆一模)某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了x•46%=230人,回答问题统计结果如图表所示.
组号 分组 回答正确
的人数
回答正确的人数
占本组的概率
第1组 [15,25) 5 0.5
第2组 [25,35) a 0.9
第3组 [35,45) 27 x
第4组 [45,55) B 0.36
第5组 [55,65) 3 y
(Ⅰ)分别求出a,b,x,y的值;
(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?
(Ⅲ)在(Ⅱ)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆一模)已知函数f(x)=Asin(4x+φ)(A>0,0<φ<π)在x=
π
16
时取得最大值2.
(1)求f(x)的最小正周期;
(2)求f(x)的解析式;
(3)若α∈[-
π
2
,0]
f(
1
4
α+
π
16
)=
6
5
,求sin(2α-
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆一模)(坐标系与参数方程选做题) 
已知直线l1=
x=1+3t
y=2-4t
(t为参数)与直线l2:2x-4y=5相交于点B,又点A(1,2),则|AB|=
5
2
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆一模)已知Sn是数列{an}的前n项和,且a1=1,nan+1=2Sn(n∈N*)
(1)求a2,a3,a4的值;
(2)求数列{an}的通项an
(3)设数列{bn}满足b1=
1
2
bn+1=
1
ak
b
2
n
+bn
,求证:当n≤k时有bn<1.

查看答案和解析>>

同步练习册答案