精英家教网 > 高中数学 > 题目详情

已知:A、B、C为△ABC的内角.

求证:

答案:略
解析:

证明:

又∵在△ABC中,ABC=p ,∴

成立.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知:a、b、c为集合A={1,2,3,4,5,6}中三个不同的数,通过如下框图给出的一个算法输出一个整数a,则输出的数a=5的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A,B,C为同一个球面上三点,AC⊥BC,若球心O到平面ABC的距离为2,直线AO与平面ABC成30°角,则球O的表面积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向已知角A、B、C为△ABC的内角,其对边分别为a、b、c,若向量
m
=(-cos
A
2
,sin
A
2
),
n
=(cos
A
2
,sin
A
2
),a=2
3
,且
m
n
=
1
2
,△ABC的面积S=
3
,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列a,b,c为各项都是正数的等差数列,公差为d(d>0),在a,b之间和b,c之间共插入m个实数后,所得到的m+3个数所组成的数列{an}是等比数列,其公比为q.
(1)若a=1,m=1,求公差d;
(2)若在a,b之间和b,c之间所插入数的个数均为奇数,求所插入的m个数的乘积(用a,c,m表示),求证:q是无理数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若
m
=(-cos
A
2
,sin
A
2
),
n
=(cos
A
2
,sin
A
2
),a=2
3
,且
m
n
=
1
2
,求:
(Ⅰ)若△ABC的面积S=
3
,求b+c的值.
(Ⅱ)求b+c的取值范围.
(III)求△ABC的面积的最大值.

查看答案和解析>>

同步练习册答案