精英家教网 > 高中数学 > 题目详情
i(1-i)
1+i
=(  )
分析:
i(1-i)
1+i
的分子分母同乘以(1-i),将分母实数化,化简即可.
解答:解:∵
i(1-i)
1+i
=
i(1-i)•(1-i)
(1+i)•(1-i)
=
i(-2i)
2
=-i2=1.
故选C.
点评:本题考查复数代数形式的乘除运算,关键在于令其分母实数化,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案,第二年与第一年相互独立.令ξi(i=1,2)表示方案实施两年后柑桔产量达到灾前产量的倍数.
(1).写出ξ1、ξ2的分布列;
(2).实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
(3).不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

如果有穷数列a1a2,…,an(n∈N*)满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我们称其为“对称数列”.例如:数列1,2,3,3,2,1 和数列1,2,3,4,3,2,1都为“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2009项和S2009所有可能的取值的序号为(  )
①22009-1   ②2(22009-1)③3•2m-1-22m-2010-1   ④2m+1-22m-2009-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)设函数T(x)=
2x,  0≤x<
1
2
2(1-x),  
1
2
≤x≤1

(1)求函数y=T(x2)和y=(T(x))2的解析式;
(2)是否存在实数a,使得T(x)+a2=T(x+a)恒成立,若存在,求出a的值,若不存在,请说明理由;
(3)定义Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①当x∈[ 0 ,
1
16
 ]
时,求y=T4(x)的解析式;
已知下面正确的命题:当x∈[ 
i-1
16
 ,
i+1
16
 ]
时(i∈N*,1≤i≤15),都有T4(x)=T4(
i
8
-x)
恒成立.
②若方程T4(x)=kx恰有15个不同的实数根,确定k的取值;并求这15个不同的实数根的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市西城区高三(上)期末数学试卷(文科)(解析版) 题型:解答题

如图,设A是由n×n个实数组成的n行n列的数表,其中aij(i,j=1,2,3…,n)表示位于第i行第j列的实数,且aij∈{1,-1}.记S(n,n)为所有这样的数表构成的集合.
 a11 a12 a1n
 a21 a22 … a2n




 …

 an1 an2 … ann
对于A∈S(n,n),记ri(A)为A的第i行各数之积,Cj(A)为A的第j列各数之积.令l(A)=ri(A)+Cj(A).
(Ⅰ)对如下数表A∈S(4,4),求l(A)的值;
11-1-1
1-111
1-1-11
-1-111
(Ⅱ)证明:存在A∈S(n,n),使得l(A)=2n-4k,其中k=0,1,2,…,n;
(Ⅲ)给定n为奇数,对于所有的A∈S(n,n),证明:l(A)≠0.

查看答案和解析>>

同步练习册答案