精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log2
1+x1-x

(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并证明;
(3)判断函数f(x)在定义域上的单调性,并用定义证明.
分析:(1)解不等式
1+x
1-x
>0,可得解集为(-1,1),即为所求函数的定义域.
(2)根据函数的奇偶性的定义,将f(-x)化简整理,并且与-f(x)加以比较,即可证明出函数f(x)是奇函数.
(3)运用函数单调性的定义,任取x1,x2∈(-1,1)且x1<x2,将两函数值作差,根据对数的运算性质化简,判断出差的符号,从而得到f(x1)<f(x2).因此,函数f(x)在区间(-1,1)上是增函数.
解答:解:(1)∵由
1+x
1-x
>0,得(1+x)(1-x)>0,解之得-1<x<1,
∴f(x)的定义域是(-1,1)(3分)
(2)由(1)知x∈(-1,1),定义域关于原点对称
∵f(-x)=log2
1+(-x)
1-(-x)
=log2
1-x
1+x

而-f(x)=-log2
1+x
1-x
=log2(
1+x
1-x
)-1
=log2
1-x
1+x

∴f(-x)=-f(x),可得函数f(x)是奇函数.(6分)
(3)设-1<x1<x2<1,
f(x2)-f(x1)=log2
1+x2
1-x2
-log2
1+x1
1-x1
=log2
(1-x1)(1+x2)
(1+x1)(1-x2)

∵1-x1>1-x2>0;1+x2>1+x1>0,
(1-x1)(1+x2)
(1+x1)(1-x2)
>1,结合底数2>1得log2
(1-x1)(1+x2)
(1+x1)(1-x2)
>0.
∴f(x2)-f(x1)>0,得f(x1)<f(x2
因此,函数f(x)=log2
1+x
1-x
在(-1,1)上是增函数.
点评:本题考查了求函数的定义域求法、对数的运算法则、判断函数的奇偶性、定义法证明函数单调性等知识点,属于中档题.解题的关键是熟练运用函数的基本性质及其定义,熟练掌握对数的运算法则,以达到灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案