精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱ABC-A1B1C1中,平面ABC⊥侧面A1ABB1.

(Ⅰ)求证:AB⊥BC;

(Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ,试判断θ与φ的大小关系,并予以证明.

(Ⅰ)证明:如下图,过点A在平面A1ABB1内作ADA1BD,则由平面A1BC⊥侧面A1ABB1,且平面A1BC侧面A1ABB1=A1B,得AD⊥平面A1BC,又BC平面A1BC

                                                                                       

所以ADBC

因为三棱柱ABCA1B1C1是直三棱柱,

AA1⊥底面ABC

所以AA1⊥BC.

AA1AD=A,从而BC⊥侧面A1ABB1

AB侧面A1ABB1,故ABBC

(Ⅱ)解法1:连接CD,则由(Ⅰ)知是直线AC与平面A1BC所成的角,

是二面角A1BCA的平面角,即

于是在Rt△ADC中,在Rt△ADB中,

ABAC,得所以

解法2:由(Ⅰ)知,以点B为坐标原点,以BCBABB1所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,

AA1=a,AC=b,AB=c,则 B(0,0,0), A(0,c,0),

于是

设平面A1BC的一个法向量为n=(x,y,z),则

可取n=(0,-a,c),于是,n的夹角为锐角,则互为余角.

所以

于是由cb,得

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案