精英家教网 > 高中数学 > 题目详情

已知A、B是直线上任意两点,O是外一点,若上一点C满足,则的最大值是
A.           B.          C.           D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,点P(-
2
,1)在椭圆上,线段PF2与y轴的交点M满足
PM
+
F2M
=
0

(1)求椭圆C的方程.
(2)椭圆C上任一动点M(x0,y0)关于直线y=2x的对称点为M1(x1,y1),求3x1-4y1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,左焦点为F,过原点的直线l交椭圆于M,N两点,△FMN面积的最大值为1.
(1)求椭圆E的方程;
(2)设P,A,B是椭圆E上异于顶点的三点,Q(m,n)是单位圆x2+y2=1上任一点,使
OP
=m
OA
+n
OB

①求证:直线OA与OB的斜率之积为定值;
②求OA2+OB2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知椭圆C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的两个焦点分别为F1(-1,0),F2(1,0),长半轴长为
2

(1)(i)求椭圆C的方程;
(ii)类比结论“过圆
x
2
 
+
y
2
 
=r2
上任一点(x0,y0)的切线方程是x0x+yy0=
r
2
 
”,归纳得出:过椭圆
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
上任一点(x0,y0)的切线方程是
x0x
a
2
 
+
y0y
b
2
 
=1
x0x
a
2
 
+
y0y
b
2
 
=1

(2)设M,N是直线x=2上的两个点,若
F1M
F2M
=0,求|MN|
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆一模)已知圆C的方程为x2+y2+2x-7=0,圆心C关于原点对称的点为A,P是圆上任一点,线段AP的垂直平分线l交PC于点Q.
(1)当点P在圆上运动时,求点Q的轨迹L的方程;
(2)过点B(1,
12
)能否作出直线l2,使l2与轨迹L交于M、N两点,且点B是线段MN的中点,若这样的直线l2存在,请求出它的方程和M、N两点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江西稳派名校学术联盟高三12月调研理科数学试卷(解析版) 题型:解答题

已知椭圆的中心在原点,焦点在x轴上,离心率。它有一个顶点恰好是抛物线=4y的焦点。过该椭圆上任一点PPQx轴,垂足为Q,点CQP的延长线上,且

求动点C的轨迹E的方程;

设椭圆的左右顶点分别为AB,直线ACC点不同于AB)与直线交于点RD为线段RB的中点。试判断直线CD与曲线E的位置关系,并证明你的结论。

 

查看答案和解析>>

同步练习册答案