精英家教网 > 高中数学 > 题目详情
13.设函数f(x)=$\left\{\begin{array}{l}{2sinx,x∈[0,π]}\\{|cosx|,x∈(π,2π]}\end{array}\right.$,若函数g(x)=f(x)-m在[0,2π]内恰有4个不同的零点,则实数m的取值范围是(  )
A.(0,1)B.[1,2]C.(0,1]D.(1,2)

分析 画出函数f(x)的图象,问题转化为f(x)和y=m在[0,2π]内恰有4个不同的交点,结合图象读出即可.

解答 解:画出函数f(x)在[0,2π]的图象,如图示:

若函数g(x)=f(x)-m在[0,2π]内恰有4个不同的零点,
即f(x)和y=m在[0,2π]内恰有4个不同的交点,
结合图象,0<m<1,
故选:A.

点评 本题考查了函数图象的交点问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知{|an|}是首项和公差均为1的等差数列,则a2=±2,若S2=a1+a2,则S2的所有可能值组成的集合为{-3,-1,1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≤0}\\{xlnx,x>0}\end{array}\right.$ 图象上有且仅有四个不同的点关于直线y=e的对称点在函数g(x)=kx+2e+1的图象上,则实数k的取值范围为(  )
A.(1,2)B.(-1,0)C.(-2,-1)D.(-6,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求点A(2,1)与B(1,-2)之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知直四棱柱ABCD-A1B1C1D1的底面中,DB=4,∠DAB=∠DCB=90°,∠BDC=∠BDA=60°.
(1)求直线AC与平面BB1C1C所成的角正弦值;
(2)若异面直线BC1与AC所成的角的余弦值为$\frac{{\sqrt{3}}}{4}$,求二面角B-A1C1-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知在三棱锥P-ABC中,VP-ABC=$\frac{4\sqrt{3}}{3}$,∠APC=$\frac{π}{4}$,∠BPC=$\frac{π}{3}$,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱锥P-ABC外接球的半径为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-2lnx-2ax(a∈R).
(1)当a=0时,求函数f(x)的极值;
(2)当x∈(1,+∞)时,试讨论关于x的方程f(x)+ax2=0实数根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.四面体ABCD中,AB⊥BC,AD⊥面ABC,AD=$\sqrt{7}$,AB=3,BC=4,此四面体的外接球的表面积为(  )
A.28πB.32πC.36πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知($\sqrt{x}$+$\frac{2}{x^2}$)n的展开式中,只有第六项的二项式系数最大
(1)求该展开式中常数项;
(2)求展开式中系数最大的项为第几项?

查看答案和解析>>

同步练习册答案