精英家教网 > 高中数学 > 题目详情

命题“数学公式<0”的一个必要不充分条件是


  1. A.
    -数学公式<x<3
  2. B.
    -数学公式<x<4
  3. C.
    -3<x<数学公式
  4. D.
    -1<x<2
B
分析:解出“<0的解,再根据必要条件和充分条件的定义对A、B、C、D四个选项进行一一判断;
解答:∵命题“<0”,
∴-<x<3,
A、-<x<3,A是充要条件,故A错误;
B、∵-<x<3?-<x<4,∴故B正确;
C、∵-<x<3推不出<x<,故C错误;
D、、∵-<x<3推不出-1<x<2,故D错误;
故选B.
点评:此题主要考查不等式的求解问题,还考查了必要条件和充分条件的定义及其判断,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①不等式x2-4ax+3a2<0的解集为{x|a<x<3a};
②若函数y=f(x+1)为偶函数,则y=f(x)的图象关于x=1对称;
③若不等式|x-4|+|x-3|<a的解集为空集,则必有a≤1;
④函数y=f(x)的图象与直线x=a至多有一个交点.
其中所有正确命题的序号是
②③④
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A具有以下性质:①0∈A,1∈A;②若x,y∈A,则x-y∈A,且x≠0时,
1
x
∈A
.则称集合A是“好集”.
(Ⅰ)分别判断集合B={-1,0,1},有理数集Q是否是“好集”,并说明理由;
(Ⅱ)设集合A是“好集”,求证:若x,y∈A,则x+y∈A;
(Ⅲ)对任意的一个“好集”A,分别判断下面命题的真假,并说明理由.
命题p:若x,y∈A,则必有xy∈A;
命题q:若x,y∈A,且x≠0,则必有
y
x
∈A

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A具有以下性质:①0∈A,1∈A;②若x,y∈A,则x-y∈A,且x≠0时,
1
x
∈A
.则称集合A是“好集”.
(Ⅰ)分别判断集合B={-1,0,1},有理数集Q是否是“好集”,并说明理由;
(Ⅱ)设集合A是“好集”,求证:若x-y∈A,则x+y∈A;
(Ⅲ)对任意的一个“好集”A,分别判断下面命题的真假,并说明理由.
命题p:若x,y∈A,则必有xy∈A;
命题q:若x,y∈A,且x≠0,则必有
y
x
∈A

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①不等式x2-4ax+3a2<0的解集为{x|a<x<3a};
②若函数y=f(x+1)为偶函数,则y=f(x)的图象关于x=1对称;
③若不等式|x-4|+|x-3|<a的解集为空集,必有a≥1;
④函数y=f(x)的图象与直线x=a至多有一个交点;
⑤若角α,β满足cosα•cosβ=1,则sin(α+β)=0.
其中所有正确命题的序号是
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)若集合A具有以下性质:①0∈A,1∈A;②若x,y∈A,则x-y∈A,且x≠0时,
1
x
∈A
.则称集合A是“好集”.
(1)集合B={-1,0,1}是好集;
(2)有理数集Q是“好集”;
(3)设集合A是“好集”,若x,y∈A,则x+y∈A;
(4)设集合A是“好集”,若x,y∈A,则必有xy∈A;
(5)对任意的一个“好集A”,若x,y∈A,且x≠0,则必有
y
x
∈A

则上述命题正确的个数有(  )

查看答案和解析>>

同步练习册答案