精英家教网 > 高中数学 > 题目详情

设f(x)-3-|x-1|,求________

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)在x0处可导,下列式子中与f′(x0)相等的是(  )
(1)
lim
△x→0
f(x0)-f(x0-2△x)
2△x
;(2)
lim
△x→0
f(x0+△x)-f(x0-△x)
△x

(3)
lim
△x→0
f(x0+2△x)-f(x0+△x)
△x
(4)
lim
△x→0
f(x0+△x)-f(x0-2△x)
△x
A、(1)(2)
B、(1)(3)
C、(2)(3)
D、(1)(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄一模)设f(x)=
x-3,x≥10
f[f(x+5),x<10
则f(8)的值为(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省无锡市滨湖区梅村高级中学高三(上)11月月考数学试卷(理科)(解析版) 题型:解答题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).
定义:(1)设f''(x)是函数y=f(x)的导数y=f'(x)的导数,若方程f''(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”;
定义:(2)设x为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x+x)+f(x-x)=2f(x)成立,则函数y=f(x)的图象关于点(x,f(x))对称.
已知f(x)=x3-3x2+2x+2,请回答下列问题:
(1)求函数f(x)的“拐点”A的坐标
(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数G(x),使得它的“拐点”是(-1,3)(不要过程)

查看答案和解析>>

科目:高中数学 来源:2009年山东省东营市高考数学一模试卷(理科)(解析版) 题型:解答题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).
定义:(1)设f''(x)是函数y=f(x)的导数y=f'(x)的导数,若方程f''(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”;
定义:(2)设x为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x+x)+f(x-x)=2f(x)成立,则函数y=f(x)的图象关于点(x,f(x))对称.
已知f(x)=x3-3x2+2x+2,请回答下列问题:
(1)求函数f(x)的“拐点”A的坐标
(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数G(x),使得它的“拐点”是(-1,3)(不要过程)

查看答案和解析>>

科目:高中数学 来源:2011年辽宁省丹东二中高三数学试卷(文科)(解析版) 题型:解答题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).
定义:(1)设f''(x)是函数y=f(x)的导数y=f'(x)的导数,若方程f''(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”;
定义:(2)设x为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x+x)+f(x-x)=2f(x)成立,则函数y=f(x)的图象关于点(x,f(x))对称.
已知f(x)=x3-3x2+2x+2,请回答下列问题:
(1)求函数f(x)的“拐点”A的坐标
(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数G(x),使得它的“拐点”是(-1,3)(不要过程)

查看答案和解析>>

同步练习册答案