精英家教网 > 高中数学 > 题目详情
已知为正实数,设,则的最小值为__________.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有以下命题:设an1,an2,…anm是公差为d的等差数列{an}中任意m项,若
n1+n2+…+nm
m
=p+
r
m
(p∈N*,r∈N且r<m),则
an1+an2+…+anm
m
=ap+
r
m
d;特别地,当r=0时,称ap为an1,an2,…anm的等差平均项.
(1)已知等差数列{an}的通项公式为an=2n,根据上述命题,则a1,a3,a10,a18的等差平均项为:
 

(2)将上述真命题推广到各项为正实数的等比数列中:设an1,an2,…anm是公比为q的等比数列{an}中任意m项,若
n1+n2+…+nm
m
=p+
r
m
(p∈N*,r∈N且r<m),则
 
;特别地,当r=0时,称ap为an1,an2,…anm的等比平均项.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做题)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-1:几何证明选讲]
已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至点E.
求证:AD的延长线平分∠CDE
B.[选修4-2:矩阵与变换]
已知矩阵A=
12
-14

(1)求A的逆矩阵A-1
(2)求A的特征值和特征向量.
C.[选修4-4:坐标系与参数方程]
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为
x=
1
2
t
y=
3
2
t+1
(t为参数),求直线l被曲线C截得的线段长度.
D.[选修4-5,不等式选讲](本小题满分10分)
设a,b,c均为正实数,求证:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知为正实数,设,则的最小值为_________

查看答案和解析>>

同步练习册答案