精英家教网 > 高中数学 > 题目详情

选修4-1:几何证明选讲
如图,在△ABC中,BC边上的点D满足BD=2DC,以BD为直径作圆O恰与CA相切于点A,过点B作BE⊥CA于点E,BE交圆D于点F.
(I)求∠ABC的度数:
( II)求证:BD=4EF.

解:(Ⅰ)连接OA、AD.
∵AC是圆O的切线,OA=OB,
∴OA⊥AC,∠OAB=∠OBA=∠DAC,…(2分)
又AD是Rt△OAC斜边上的中线,
∴AD=OD=DC=OA,
∴△AOD是等边三角形,∴∠AOD=60°,
故∠ABC=∠AOD=30°.…(5分)
(Ⅱ)由(Ⅰ)可知,
在Rt△AEB中,∠EAB=∠ADB=60°,
∴EA=AB=×BD=BD,
EB=AB=×BD=BD,…(7分)
由切割线定理,得EA2=EF×EB,
BD2=EF×BD,
∴BD=4EF.…(10分)
分析:(Ⅰ)连接OA、AD.由AC是圆O的切线,OA=OB,知OA⊥AC,∠OAB=∠OBA=∠DAC,由AD是Rt△OAC斜边上的中线,知AD=OD=DC=OA,由△AOD是等边三角形,能求出∠ABC的度数.
(Ⅱ)由(Ⅰ)可知,在Rt△AEB中,∠EAB=∠ADB=60°,由EA=AB=×BD=BD,知EB=AB=×BD=BD,由切割线定理,得EA2=EF×EB,由此能够证明BD=4EF.
点评:本题考查弦切角、与圆有关的比例线段的应用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选修4-1:几何证明选讲
如图,圆O的直径AB=10,弦DE⊥AB于点H,HB=2.
(1)求DE的长;
(2)延长ED到P,过P作圆O的切线,切点为C,若PC=2
5
,求PD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A、选修4-1:几何证明选讲 
如图,PA与⊙O相切于点A,D为PA的中点,
过点D引割线交⊙O于B,C两点,求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
已知矩阵M=
12
2x
的一个特征值为3,求另一个特征值及其对应的一个特征向量.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的方程为ρ=2
2
sin(θ+
π
4
)
,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=t
y=1+2t
(t为参数),判断直线l和圆C的位置关系.
D.选修4-5:不等式选讲
求函数y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐州模拟)选修4-1:几何证明选讲
如图,直线AB经过圆上O的点C,并且OA=OB,CA=CB,圆O交于直线OB于E,D,连接EC,CD,若tan∠CED=
12
,圆O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)选修4-1:几何证明选讲
如图,圆O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连结AD交圆O于点E,连结BE与AC交于点F,求证:AE2=EF•BE.

查看答案和解析>>

同步练习册答案