精英家教网 > 高中数学 > 题目详情

已知函数y=x+数学公式有如下性质:如果常数t>0,那么该函数(0,数学公式]上是减函数,在[数学公式,+∞)上是增函数.
(1)已知f(x)=数学公式,x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域.
(2)对于(1)中的函数f(x)和函数g(x),若对于任意的x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.

解:(1)f(x)==2x+1+-8,
设u=2x+1,x∈[0,1],则1≤u≤3,则y=u+-8,u∈[1,3],由已知性质得,
当1≤u≤2,即0≤x≤时,f(x)单调递减,所以递减区间为[0,]
当2≤u≤3,即≤x≤1时,f(x)单调递增,所以递增区间为[,1]
由f(0)=-3,f()=-4,f(1)=-,得f(x)的值域为[-4,-3]
(2)由于g(x)=-x-2a为减函数,故g(x)∈[-1-2a,-2a],x∈[0,1],
由题意,f(x)的值域为g(x)的值域的子集,从而有
所以 a=
分析:(1)将2x+1看成整体,研究对勾函数的单调性从而求出函数的值域,以及利用复合函数的单调性的性质得到该函数的单调性;
(2)对于任意的x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)可转化成f(x)的值域为g(x)的值域的子集,建立关系式,解之即可.
点评:本题主要考查了利用单调性求函数的值域,以及函数恒成立问题,同时考查了转化的思想和运算求解的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•武昌区模拟)已知点P在半径为1的半圆周上沿着A→P→B路径运动,设弧   的长度为x,弓形面积为f(x)(如图所示的阴影部分),则关于函数y=f(x)的有如下结论:
①函数y=f(x)的定义域和值域都是[0,π];
②如果函数y=f(x)的定义域R,则函数y=f(x)是周期函数;
③如果函数y=f(x)的定义域R,则函数y=f(x)是奇函数;
④函数y=f(x)在区间[0,π]是单调递增函数.
以上结论的正确个数是(  )

查看答案和解析>>

科目:高中数学 来源:湖北省武汉市武昌区2012届高三5月调研考试数学文科试题 题型:013

已知点P在半径为1的半圆周上沿着A→P→B路径运动,设弧的长度为x,弓形面积为f(x)(如图所示的阴影部分),则关于函数y=f(x)的有如下结论:

①函数y=f(x)的定义域和值域都是[0,π];

②如果函数y=f(x)的定义域R,则函数y=f(x)是周期函数;

③如果函数y=f(x)的定义域R,则函数y=f(x)是奇函数;

④函数y=f(x)在区间[0,π]上是单调递增函数.

以上结论的正确个数是

[  ]

A.1

B.2

C.3

D.4

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知点P在半径为1的半圆周上沿着A→P→B路径运动,设弧  的长度为x,弓形面积为f(x)(如图所示的阴影部分),则关于函数y=f(x)的有如下结论:
①函数y=f(x)的定义域和值域都是[0,π];
②如果函数y=f(x)的定义域R,则函数y=f(x)是周期函数;
③如果函数y=f(x)的定义域R,则函数y=f(x)是奇函数;
④函数y=f(x)在区间[0,π]是单调递增函数.
以上结论的正确个数是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中数学 来源:2012年湖北省武汉市武昌区高三五月调考数学试卷(文科)(解析版) 题型:选择题

已知点P在半径为1的半圆周上沿着A→P→B路径运动,设弧   的长度为x,弓形面积为f(x)(如图所示的阴影部分),则关于函数y=f(x)的有如下结论:
①函数y=f(x)的定义域和值域都是[0,π];
②如果函数y=f(x)的定义域R,则函数y=f(x)是周期函数;
③如果函数y=f(x)的定义域R,则函数y=f(x)是奇函数;
④函数y=f(x)在区间[0,π]是单调递增函数.
以上结论的正确个数是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案