精英家教网 > 高中数学 > 题目详情
函数f(x)=
x2-2x
的单调增区间为
 
分析:求函数的单调递增区间,需要先求出函数的定义域,再由相应函数的单调性判断出函数的单调区间.
解答:解:令x2-2x≥0,解得x≥2或者x≤0,
故函数的定义域是(-∞,0]∪[2,+∞),
函数f(x)=
x2-2x
是一个复合函数,外层函数是y=
t
,是一个增函数,
内层函数是t=x2-2x,其在(-∞,0]上是一个减函数,在[2,+∞)上是一个增函数,
由复合函数单调性的判断规则知函数f(x)=
x2-2x
的单调增区间为[2,+∞),
故答案为[2,+∞).
点评:本题考点是函数的单调性及单调区间,考查复合函数单调性的判断方法,复合函数单调性的判断规则是这样的,若这个函数是由二个以上的函数复合而成的,那就查在这个函数的定义域上有多少层是减函数,若有奇数层是减函数则复合函数是减函数,若有偶数层是减函数,则这个复合函数是增函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+4xx≥0
4x-x2x<0.
若f(2-a2)>f(a),则实数a的取值范围是(  )
A、(-∞,-1)∪(2,+∞)
B、(-1,2)
C、(-2,1)
D、(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+1x-1
,其图象在点(0,-1)处的切线为l.
(I)求l的方程;
(II)求与l平行的切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
x2+1
 
 
 
 
 
 
,(x≥0)
-x+
1
 
 
 
 
 
,(x<0)
,则f(-1)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知函数f(x)=
-x2+4x-10(x≤2)
log3(x-1)-6(x>2)
,若f(6-a2)>f(5a),则实数a的取值范围是
(-6,1)
(-6,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)设函数f(x)=-x2+2ax+m,g(x)=
ax

(I)若函数f(x),g(x)在[1,2]上都是减函数,求实数a的取值范围;
(II)当a=1时,设函数h(x)=f(x)g(x),若h(x)在(0,+∞)内的最大值为-4,求实数m的值.

查看答案和解析>>

同步练习册答案