精英家教网 > 高中数学 > 题目详情
已知直线y=kx-1与双曲线x2-y2=1的左支交于AB两点,若另有一条直线l经过P(-2,0)及线段AB的中点Q.

(1)求k的取值范围;

(2)求直线ly轴上的截距b的取值范围.

解:(1)把y=kx-1代入双曲线方程x2-y2=1,?

化简整理得(1-k2)x2+2kx-2=0.?

由题设条件.?

(2)设A(x1,y1)、B(x2,y2)、Q(x,y),则x==, y=,

∴直线l的方程为y=(x+2).?

x=0,,?

∵-,u=2k2+k-2为减函数,?

.又u≠0,∴b<-2或b>2+.

点评:注意正确转化直线与双曲线的单支相交后的不等式组.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)已知直线y=kx+1(k∈R)与椭圆
x2
2
+
y2
m
=1总有交点,则m的取值范围为(  )
A、(1,2]
B、[1,2)
C、[1,2)∪[2,+∞)
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=kx+1(k∈R)与焦点在x轴上的椭圆
x2
5
+
y2
t
=1恒有公共点,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=kx-1与双曲线x2-y2=1的左支交于不同两点A、B,若另有一条直线l经过P(-2,0)及线段AB的中点Q.
(1)求k的取值范围;
(2)求直线l在y轴上的截距b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
3
2
,原点到过A(a,0),B(0,-b)两点的直线的距离是
4
5
5

(1)求椭圆的方程;
(2)已知直线y=kx+1(k≠0)交椭圆于不同的两点E,F,且E,F都在以B为圆心的圆上,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=kx-1与双曲线x2-y2=4没有公共点,则实数k的取值范围为
 

查看答案和解析>>

同步练习册答案