精英家教网 > 高中数学 > 题目详情
抛物线的焦点为椭圆
x2
9
+
y2
4
=1的左焦点,顶点在椭圆中心,则抛物线方程为______.
因为椭圆
x2
9
+
y2
4
=1的左焦点为(-
5
.0),所以
p
2
=
5
,2p=4
5
且抛物线开口向左.
所以抛物线方程为y2=-4
5
x.
故答案为:y2=-4
5
x.
练习册系列答案
相关习题

科目:高中数学 来源:2009-2010学年广州市七区联考高二数学(文)下学期期末监测 题型:解答题

(本大题满分14分)

如图,已知直线L:过椭圆C:的右焦点F,

且交椭圆C于A、B两点,点A、B在直线上的射影依次为点D、E.

(Ⅰ)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;

(Ⅱ)若为x轴上一点;

求证: A、N、E三点共线.

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直线L:数学公式的右焦点F,且交椭圆C于A、B两点,点A、B在直线G:x=a2上的射影依次为点D、E.
(1)若抛物线数学公式的焦点为椭圆C 的上顶点,求椭圆C的方程;(2)(理科生做)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;
否则说明理由.
(文科生做)若数学公式为x轴上一点,求证:数学公式

查看答案和解析>>

科目:高中数学 来源:四川省月考题 题型:解答题

如图,已知直线L:x=my+1过椭圆C:的右焦点F,且交椭圆C于A,B两点,点A,F,B在直线G:x=a2上的射影依次为点D,K,E,
(1)已知抛物线的焦点为椭圆C的上顶点.
①求椭圆C的方程;
②若直线L交y轴于点M,且,当m变化时,求λ12的值;
(2)连接AE,BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标并给予证明;否则说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年安徽省安庆市潜山中学高考数学模拟试卷(解析版) 题型:解答题

如图,已知直线L:x=my+1过椭圆C:的右焦点F,且交椭圆C于A,B两点,点A,F,B在直线G:x=a2上的射影依次为点D,K,E,
(1)已知抛物线的焦点为椭圆C的上顶点.
①求椭圆C的方程;
②若直线L交y轴于点M,且,当m变化时,求λ12的值;
(2)连接AE,BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标并给予证明;否则说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年辽宁省沈阳市东北育才学校高考数学模拟试卷(文科)(解析版) 题型:解答题

如图,已知直线L:的右焦点F,且交椭圆C于A、B两点,点A、B在直线G:x=a2上的射影依次为点D、E.
(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)若为x轴上一点,求证:

查看答案和解析>>

同步练习册答案