精英家教网 > 高中数学 > 题目详情

将1,2,3……,20这二十个数分成甲,乙两组,使甲组各数的平均数比乙组各数的平均数大1,且甲,乙两组的平均数均为正整数,则甲组有    ▲    个数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09 年聊城一模理)(12分)

某校有一贫困学生因病需手术治疗,但现在还差手术费万元,团委计划在全校开展爱心募捐活动,为了增加活动的趣味性吸引更多学生参与,特举办“摇奖100%中奖”活动.凡捐款10元者,享受一次摇奖机会,如图是摇奖机的结构示意图,摇奖机的旋转盘是均匀的,扇形区域所对应的圆心角的比值分别为1:2:3:4:5.相应区域分别设立一、二、三、四、五等奖,奖品分别为价值分别为5元、4元、3元、2元、1元的学习用品.摇奖时,转动圆盘片刻,待停止后,固定指针指向哪个区域(边线忽略不计)即可获得相应价值的学习用品(如图指针指向区域,可获得价值3元的学习用品).

(Ⅰ)预计全校捐款10元者将会达到1500人次,那么除去

购买学习用品的款项后,剩余款项是否能帮助该生完成手术治疗?

(II)如果学生甲捐款20元,获得了两次摇奖机会,求他获得价

值6元的学习用品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数F(n)=n,n=1,2,3,4,5,6,试用计算机语言将F(3),F(4),F(5)向后移一个位置,使F(3)空出来且F(3)=0从而形成新的对应关系,使用语言正确的是  (  )

    A.F(6)=F(5),F(5)=F(4),F(4)=F(3),F(3)=0

    B.F(3)=F(4),F(4)=F(5),F(5)=F(6),F(3)=0

    C.F(3)=0,F(6)=F(5),F(5)=F(4),F(4)=F(3)

    D.F(3)=0,F(4)=F(5),F(5)=F(6),F(4)=F(3)

   

查看答案和解析>>

科目:高中数学 来源: 题型:

某校有一贫困学生因病需手术治疗,但现在还差手术费万元,团委计划在全校开展爱心募捐活动,为了增加活动的趣味性吸引更多学生参与,特举办“摇奖100%中奖”活动.凡捐款10元者,享受一次摇奖机会,如图是摇奖机的结构示意图,摇奖机的旋转盘是均匀的,扇形区域所对应的圆心角的比值分别为1:2:3:4:5.相应区域分别设立一、二、三、四、五等奖,奖品分别为价值分别为5元、4元、3元、2元、1元的学习用品.摇奖时,转动圆盘片刻,待停止后,固定指针指向哪个区域(边线忽略不计)即可获得相应价值的学习用品(如图指针指向区域,可获得价值3元的学习用品).

(Ⅰ)预计全校捐款10元者将会达到1500人次,那么除去

购买学习用品的款项后,剩余款项是否能帮助该生完成手术治疗?

(II)如果学生甲捐款20元,获得了两次摇奖机会,求他获得价

值6元的学习用品的概率.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年陕西省高三第十一次大练习理科数学(解析版) 题型:解答题

某校有一贫困学生因病需手术治疗,但现在还差手术费万元,团委计划在全校开展爱心募捐活动,为了增加活动的趣味性吸引更多学生参与,特举办“摇奖100%中奖”活动.凡捐款10元者,享受一次摇奖机会,如图是摇奖机的结构示意图,摇奖机的旋转盘是均匀的,扇形区域所对应的圆心角的比值分别为1:2:3:4:5.相应区域分别设立一、二、三、四、五等奖,奖品分别为价值分别为5元、4元、3元、2元、1元的学习用品.摇奖时,转动圆盘片刻,待停止后,固定指针指向哪个区域(边线忽略不计)即可获得相应价值的学习用品(如图指针指向区域,可获得价值3元的学习用品).

(Ⅰ)预计全校捐款10元者将会达到1500人次,那么除去购买学习用品的款项后,剩余款项是否能帮助该生完成手术治疗?

(II)如果学生甲捐款20元,获得了两次摇奖机会,求他获得价值6元的学习用品的概率.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高考模拟预测数学文试卷(解析版) 题型:解答题

一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.

(I)从袋中随机抽取一个球,将其编号记为,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为.求关于的一元二次方程有实根的概率;

(II)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n.若以 作为点P的坐标,求点P落在区域内的概率.

【解析】第一问利用古典概型概率求解所有的基本事件数共12种,然后利用方程有实根,则满足△=4a2-4b2≥0,即a2≥b2。,这样求得事件发生的基本事件数为6种,从而得到概率。第二问中,利用所有的基本事件数为16种。即基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16种。在求解满足的基本事件数为(1,1) (2,1)  (2,2) (3,1) 共4种,结合古典概型求解得到概率。

(1)基本事件(a,b)有:(1,2)   (1,3)  (1,4)   (2,1)   (2,3)   (2,4)   (3,1)   (3,2)  (3,4)   (4,1)   (4,2)   (4,3)共12种。

有实根, ∴△=4a2-4b2≥0,即a2≥b2

记“有实根”为事件A,则A包含的事件有:(2,1)   (3,1)   (3,2)  (4,1)   (4,2)   (4,3) 共6种。

∴PA.= 。   …………………6分

(2)基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16种。

记“点P落在区域内”为事件B,则B包含的事件有:

(1,1) (2,1)  (2,2) (3,1) 共4种。∴PB.=

 

查看答案和解析>>

同步练习册答案