精英家教网 > 高中数学 > 题目详情
设n为正整数,求证:<1.

证明:∵n∈N*,∴,

以上各式相加得

故原不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)2+1
bx+c-b
(a,b,c∈N)的图象按向量
e
=(-1,0)
平移后得到的图象关于原点对称,且f(2)=2,f(3)<3.
(1)求a,b,c的值;
(2)设0<|x|<1,0<|t|≤1.求证:|t+x|+|t-x|<|f(tx+1)|
(3)定义函数G(x)=f(x)-x+2.当n为正整数时,求证:G(4)×G(6)×G(8)×…×G(2n)>
2n+1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x,y)=(1+
m
y
)x(m>0,y>0)

(1)当m=3时,求f(6,y)的展开式中二项式系数最大的项;
(2)若f(4,y)=a0+
a1
y
+
a2
y2
+
a3
y3
+
a4
y4
且a3=32,求
4
i=0
ai

(3)设n是正整数,t为正实数,实数t满足f(n,1)=mnf(n,t),求证:f(2010,1000
t
)>3f(-2010,t)

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合W由满足下列两个条件的数列{an}构成:①
an+an+2
2
an+1
;②存在实数M,使an≤M.(n为正整数)
(Ⅰ)在只有5项的有限数列{an}、{bn}中,其中a1=1,a2=2,a3=3,a4=4,a5=5;b1=1,b2=4,b3=5,b4=4,b5=1;试判断数列{an}、{bn}是否为集合W中的元素;
(Ⅱ)设{cn}是各项为正数的等比数列,Sn是其前n项和,c3=
1
4
S3=
7
4
,试证明{Sn}∈W,并写出M的取值范围;
(Ⅲ)设数列{dn}∈W,对于满足条件的M的最小值M0,都有dn≠M0(n∈N*).求证:数列{dn}单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
=(x , 2)
=(x+n , 2x-1)
(n为正整数),函数y=
在[0,1]上的最小值与最大值的和为an,又数列{bn}满足:nb1+(n-1)b2+…+2bn-1+bn=(
9
10
)n-1+(
9
10
)n-2+…+
9
10
+1

(1)求证:an=n+1(2).
(2)求bn的表达式.
(3)若cn=-an•bn,试问数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn≤ck成立?证明你的结论.(注:
=( a1 ,a2 )
={ a1 ,a2 }
表示意义相同)

查看答案和解析>>

同步练习册答案