精英家教网 > 高中数学 > 题目详情
已知数列{an}是首项为a1,各项均为正数的等比数列,其前n项和为Sn,且有5S2=4S4
(1)求数列{an}的公比q;
(2)设bn=q+Sn,试问{bn}是否为等比数列?若是求出a1的值;若不是说明理由.
分析:(1)先确定q≠1,再利用等比数列的求和公式,可求数列{an}的公比q;
(2)假设存在,表示出bn,利用b1,b2,b3成等比数列,求出a1,与条件比较可得结论.
解答:解:(1)若q=1,5S2=10a1,4S4=16a1,不满足5S2=4S4,故q≠1…(2分)
由5S2=4S45
a1(1-q2)
1-q
=4
a1(1-q4)
1-q
,1+q2=
5
4
q2=
1
4

∵an>0,∴q=
1
2
…(5分)
(2)假设满足条件的等比数列{bn}存在.
由(1)得Sn=
a1[1-(
1
2
)
n
]
1-
1
2
=2a1[1-(
1
2
)n]
,∴bn=
1
2
+2a1[1-(
1
2
)n]
,…(8分)
∵{bn}是等比数列,∴b1,b2,b3成等比数列,∴
b
2
2
=b1b3

(
3
2
a1+
1
2
)2=(a1+
1
2
)(
7
4
a1+
1
2
)
,整理得4
a
2
1
+a1=0
,得a1=0或a1=-
1
4
…(11分)
这与数列{an}各项均为正数矛盾,故数列{bn}不存在.…(12分)
点评:本题考查等比数列的求和,考查学生的计算能力,正确运用等比数列的通项与求和公式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是首项为3,公差为2的等差数列,其前n项和为Sn,数列{bn}为等比数列,且b1=1,bn>0,数列{ban}是公比为64的等比数列.
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求证:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=
1
4
的等比数列,其前n项和Sn中S3,S4,S2成等差数列,
(1)求数列{an}的通项公式;
(2)设bn=log
1
2
|an|,若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求证:
1
6
≤Tn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1的等差数列,且公差不为零,而等比数列{bn}的前三项分别是a1,a2,a6
(I)求数列{an}的通项公式an
(II)若b1+b2+…bk=85,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1,公差为2的等差数列,又数列{bn}的前n项和Sn=nan
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若cn=
1bn(2an+3)
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=a,公差为2的等差数列,数列{bn}满足2bn=(n+1)an
(1)若a1、a3、a4成等比数列,求数列{an}的通项公式;
(2)若对任意n∈N*都有bn≥b5成立,求实数a的取值范围;
(3)数列{cn}满足 cn+1-cn=(
12
)n(n∈N*)
,其中c1=1,f(n)=bn+cn,当a=-20时,求f(n)的最小值(n∈N*).

查看答案和解析>>

同步练习册答案