精英家教网 > 高中数学 > 题目详情
若A、B为锐角,满足
sinA
sinB
=cos(A+B),则tanA的最大值为(  )
A、
2
4
B、
1
2
C、1
D、
2
分析:由题意可得可得-cosCsinB=sinA,结合正弦定理和余弦定理可得3a2+b2=c2.由于tan2A=
1
cos2A
-1,且A为锐角可得,可得 cosA>0,tanA>0.只要求出cosA的最小值,就可求得tanA的最大值,由余弦定理结合基本不等式可得cosA的最小值,进而可得答案.
解答:解:由
sinA
sinB
=cos(A+B)可得cos(A+B)sinB=sinA,
故-cosCsinB=sinA,
再由正弦定理和余弦定理,-
a2+b2-c2
2ab
×b=a,化简可得 3a2+b2=c2
由于tan2A=
1
cos2A
-1,且A为锐角可得,可得 cosA>0,tanA>0.
只要求出cosA的最小值,就可求得tanA的最大值.
又cosA=
b2+c2-a2
2bc
=
2b2+c2
3bc
2
2
bc
3bc
=
2
2
3

当且仅当
2
b=c时,等号成立.
即cosA的最小值为
2
2
3
. 故tan2A 的最大值为
1
8

故tanA的最大值为
1
8
=
2
4

故选:A
点评:本题考查两角和与差的三角函数公式,涉及正余弦定理的应用,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下5个命题:
①曲线x2-(y-1)2=1按
a
=(1,-2)
平移可得曲线(x+1)2-(y-3)2=1;
②设A、B为两个定点,n为常数,|
PA
|-|
PB
|=n
,则动点P的轨迹为双曲线;
③若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,延长F1P到点M,使|F2P|=|PM|,则点M的轨迹是圆;
④A、B是平面内两定点,平面内一动点P满足向量
AB
AP
夹角为锐角θ,且满足 |
PB
| |
AB
| +
PA
AB
=0
,则点P的轨迹是圆(除去与直线AB的交点);
⑤已知正四面体A-BCD,动点P在△ABC内,且点P到平面BCD的距离与点P到点A的距离相等,则动点P的轨迹为椭圆的一部分.
其中所有真命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角三角形中,三个内角A、B、C的对边分别为a、b、c,满足条件sin22B+sin2BsinB+cos2B=1.
(Ⅰ)求∠B的值;
(Ⅱ)若b=3,求a+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中正确的有
②③④
②③④
(填序号)
①若
a
b
满足
a
b
>0,则
a
b
所成的角为锐角;
②若
a
b
不共线,
m
=λ1
a
+λ2
b
n
=μ1
a
+μ2
b
(λ1,λ2,μ1,μ2∈R),则
m
n
的充要条件是λ1μ22μ1=0;
③若
OA
+
OB
+
OC
=
O
,且|
OA
|=|
OB
|=|
OC
|
,则△ABC是等边三角形;
④若
a
b
为非零向量,且
a
b
,则|
a
+
b
|=|
a
-
b
|;
⑤设
a
b
c
为非零向量,若
a
b
=
c
b
,则
a
=
c

⑥若
a
b
c
为非零向量,则
a
•(
b
c
)=(
a
b
)•
c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(1,sin2x)
n
=(cos2x,
3
)
f(x)=
m
n
.锐角△ABC的三内角A、B、C对应的三边分别为a、b、c.满足:f(A)=1.
(1)求角A;
(2)若a=2,△ABC的面积为
3
,求边b、c的值.

查看答案和解析>>

同步练习册答案