精英家教网 > 高中数学 > 题目详情

如果集合,集合,则______.

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年北京市西城区高三二模考试理科数学 题型:解答题

((本小题满分13分)

为集合的子集,且满足两个条件:

②对任意的,至少存在一个,使.

则称集合组具有性质.

如图,作列数表,定义数表中的第行第列的数为.

(Ⅰ)当时,判断下列两个集合组是否具有性质,如果是请画出所对应的表格,如果不是请说明理由;

集合组1:

集合组2:.

(Ⅱ)当时,若集合组具有性质,请先画出所对应的行3列的一个数表,再依此表格分别写出集合

(Ⅲ)当时,集合组是具有性质且所含集合个数最小的集合组,求的值及的最小值.(其中表示集合所含元素的个数)

 

查看答案和解析>>

科目:高中数学 来源: 题型:

为集合的子集,且满足两个条件:

②对任意的,至少存在一个,使.

则称集合组具有性质.

如图,作列数表,定义数表中的第行第列的数为.

(Ⅰ)当时,判断下列两个集合组是否具有性质,如果是请画出所对应的表格,如果不是请说明理由;

集合组1:

集合组2:.

(Ⅱ)当时,若集合组具有性质,请先画出所对应的行3列的一个数表,再依此表格分别写出集合

(Ⅲ)当时,集合组是具有性质且所含集合个数最小的集合组,求的值及的最小值.(其中表示集合所含元素的个数)

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)

为集合的子集,且满足两个条件:

②对任意的,至少存在一个,使.

则称集合组具有性质.

如图,作列数表,定义数表中的第行第列的数为.

(Ⅰ)当时,判断下列两个集合组是否具有性质,如果是请画出所对应的表格,如果不是请说明理由;

集合组1:

集合组2:.

(Ⅱ)当时,若集合组具有性质,请先画出所对应的行3列的一个数表,再依此表格分别写出集合

(Ⅲ)当时,集合组是具有性质且所含集合个数最小的集合组,求的值及的最小值.(其中表示集合所含元素的个数)

查看答案和解析>>

科目:高中数学 来源:2011届北京市西城区高三二模考试理科数学 题型:解答题

((本小题满分13分)
为集合的子集,且满足两个条件:

②对任意的,至少存在一个,使.
则称集合组具有性质.
如图,作列数表,定义数表中的第行第列的数为.

















(Ⅰ)当时,判断下列两个集合组是否具有性质,如果是请画出所对应的表格,如果不是请说明理由;
集合组1:
集合组2:.
(Ⅱ)当时,若集合组具有性质,请先画出所对应的行3列的一个数表,再依此表格分别写出集合
(Ⅲ)当时,集合组是具有性质且所含集合个数最小的集合组,求的值及的最小值.(其中表示集合所含元素的个数)

查看答案和解析>>

同步练习册答案