已知椭圆
(
)的离心率
,直线
(
)与曲线
交于不同的两点
,
,以线段
为直径作圆
,圆心为
。
(1)求椭圆
的方程;
(2)若圆
与
轴相交于不同的两点
,
,求
的面积的最大值。
科目:高中数学 来源: 题型:
(本小题满分14分)已知椭圆
,它的离心率为
,直线
与以原点为圆心,以椭圆
的短半轴长为半径的圆相切.⑴求椭圆
的方程;⑵设椭圆
的左焦点为
,左准线为
,动直线
垂直于直线
,垂足为点
,线段
的垂直平分线交
于点
,求动点
的轨迹
的方程;⑶将曲线
向右平移2个单位得到曲线
,设曲线
的准线为
,焦点为
,过
作直线
交曲线
于
两点,过点
作平行于曲线
的对称轴的直线
,若
,试证明三点
(
为坐标原点)在同一条直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C:
=1(
)的离心率为
,短轴一个端点到右焦点的距离为
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
、
两点,坐标原点
到直线
的距离为
,求△
面积的最大值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江西赣州四所重点中学高三上学期期末联考文数学试卷(解析版) 题型:解答题
已知椭圆C:
的离心率与等轴双曲线的离心率互为倒数,直线
与以原点为圆心,以椭圆C的短半轴长为半径的圆相切。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点(―1,―1)
查看答案和解析>>
科目:高中数学 来源:2012-2013学年福建省漳州市七校高三第三次联考文科数学试卷(解析版) 题型:解答题
已知椭圆C:
的离心率为
,且经过点
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设斜率为1的直线l与椭圆C相交于
,
两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且
.求△ABM的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com