精英家教网 > 高中数学 > 题目详情
6.已知实数x,y满足条件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-5≥0}\\{y-3≤0}\end{array}\right.$,若不等式m(x2+y2)≤(x+y)2恒成立,则实数m的最大值是$\frac{25}{13}$.

分析 利用分式不等式的性质将不等式进行分类,结合线性规划以及恒成立问题.利用数形结合进行求解即可.

解答 解:由题意知:可行域如图,
又∵m(x2+y2)≤(x+y)2在可行域内恒成立.
且m≤$\frac{(x+y)^{2}}{{x}^{2}+{y}^{2}}$=1+$\frac{2xy}{{x}^{2}+{y}^{2}}$=1+$\frac{2•\frac{y}{x}}{1+(\frac{y}{x})^{2}}$=1+$\frac{2}{\frac{1}{\frac{y}{x}}+\frac{y}{x}}$,
故只求z=$\frac{1}{\frac{y}{x}}+\frac{y}{x}$的最大值即可.
设k=$\frac{y}{x}$,则有图象知A(2,3),
则OA的斜率k=$\frac{3}{2}$,BC的斜率k=1,
由图象可知即1≤k≤$\frac{3}{2}$,
∵z=k+$\frac{1}{k}$在1≤k≤$\frac{3}{2}$,
上为增函数,
∴当k=$\frac{3}{2}$时,z取得最大值z=$\frac{3}{2}$+$\frac{2}{3}$=$\frac{13}{6}$,
此时1+$\frac{2}{z}$=1+$\frac{2}{\frac{13}{6}}$=1+$\frac{12}{13}$=$\frac{25}{13}$,
故m≤$\frac{25}{13}$,
故m的最大值为$\frac{25}{13}$,
故答案为:$\frac{25}{13}$

点评 本题主要考查线性规划、基本不等式、还有函数知识考查的综合类题目.在解答过程当中,同学们应该仔细体会数形结合的思想、函数思想、转化思想还有恒成立思想在题目中的体现.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知a>0且a≠1,函数f(x)=loga(x+1)在区间(-1,+∞)上递减,求证:对于任意实数x1>0,x2>0,恒有$\frac{1}{2}$[f(x1-1)+f(x2-1)]≥f($\frac{{x}_{1}+{x}_{2}}{2}$-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=x2+ax-2b,若a,b都是区间[0,4]内的数,则使f(1)<0成立的概率是$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在R上的函数f(x)满足:f(x)>1且f(x)+f′(x)>1,f(0)=5,其中f′(x)是f(x)的导函数,则不等式ln[f(x)-1]>ln4-x的解集为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知双曲线C的离心率为2,它的一个焦点是抛物线x2=8y的焦点,则双曲线C的标准方程为y2-$\frac{{x}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知直线AB为圆O的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.证明:DB=DC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,x),若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$平行,则实数x的值是(  )
A.-2B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=sin(2x-$\frac{π}{6}$)的图象与函数y=cos(x-$\frac{π}{3}$)的图象(  )
A.有相同的对称轴但无相同的对称中心
B.有相同的对称中心但无相同的对称轴
C.既有相同的对称轴也有相同的对称中心
D.既无相同的对称中心也无相同的对称轴

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设a、b、c是三个互不相等的正整数,且abc=210,若a+b+c的最大值为M,最小值为m,则M-m=90.

查看答案和解析>>

同步练习册答案