精英家教网 > 高中数学 > 题目详情
9.已知集合A={x||x-2|<a},B={x|x2-2x-3<0},若B⊆A,则实数a的取值范围是a≥3.

分析 利用绝对值不等式的解法、一元二次不等式的解法分别解出A,B,再利用B⊆A即可得出.

解答 解:由|x-2|<a,可得2-a<x<2+a(a>0),∴A=(2-a,2+a)(a>0).
由x2-2x-3<0,解得-1<x<3.B=(-1,3).
∵B⊆A,则$\left\{\begin{array}{l}{2-a≤-1}\\{2+a≥3}\end{array}\right.$,解得a≥3.
故答案为:a≥3.

点评 本题考查了不等式的解法、集合的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.直线x-$\sqrt{3}$y+1=0的倾斜角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.“斐波那契数列“是数学史上一个著名数列,在斐波那契数列{an}中,a1=1,a2=1,an+2=an+1+an(n∈N*)则a7=13;若a2018=m,则数列{an}的前2016项和是m-1(用△>0表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在复平面内,表示复数z的点为A,则复数$\frac{z}{1-2i}$的共轭复数是(  )
A.iB.-iC.$\frac{3}{5}$iD.-$\frac{3}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若复数$\frac{a-i}{3+4i}$的实部是$\frac{2}{5}$,则实数a=(  )
A.2B.$\frac{14}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.圆(x-2)2+(y+2)2=1上的动点到直线3x-4y+1=0的距离的最大值为4,最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sinxcosx+$\sqrt{3}{cos^2}$x
(1)若0≤x≤$\frac{π}{2}$,求函数f(x)的值域;
(2)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)=$\frac{{\sqrt{3}}}{2}$,b=2,c=3,求cos(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算:A${\;}_{7}^{2}$•C${\;}_{9}^{0}$+lg0.01-9${\;}^{\frac{1}{2}}$-$\frac{lo{g}_{2}3}{lo{g}_{4}9}$-cos$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.满足{1,2,3}⊆M?{1,2,3,4,5}的集合M有3个.

查看答案和解析>>

同步练习册答案