精英家教网 > 高中数学 > 题目详情
20、函数y=x3-3x2+bx+c的图象如图所示,且与直线y=0在原点相切.
(1)求b、c的值;
(2)求函数的极小值;
(3)求函数的递减区间.
分析:(1)根据函数的图象经过(0,0)点得到c=0,又图象与x轴相切于(0,0)点,令导函数在x=0处的值为0得到b的值.
(2)求出导函数,令导函数为0得到根,判断根左右两边的符号,求出函数的极小值.
(3)求出导函数,令导函数小于0得到x的范围,写出区间即为函数的递减区间.
解答:解:(1)函数的图象经过(0,0)点,
∴c=0.
又图象与x轴相切于(0,0)点,
y'=3x2-6x+b,
∴0=3×02-6×0+b,
解得b=0.
(2)y=x3-3x2
y'=3x2-6x,
当x<2时,y'<0;当x>2时,y'>0.
则当x=2时,函数有极小值-4.
(3)y'=3x2-6x<0,
解得0<x<2,
∴递减区间是(0,2).
点评:解决函数的单调性、极值、最值问题,常利用的工具是函数的导函数.但要注意导函数在极值点处的值为0是此点为极值点的必要条件而不是充要条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、函数y=x3-3x2-9x(-2<x<2)有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x3-3x2+3x+1的反函数是(  )
A、f-1(x)=1+
3x-2
(x∈R)
B、f-1(x)=1-
3x-2
C、f-1(x)=1+
3x+2
(x∈R)
D、f-1(x)=1-
3x+2
(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

5、函数y=x3-3x2-9x+5的单调递减区间是
(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=x3-3x2-2x+6的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x3-3x2
(1)求函数的极小值;
(2)求函数的递增区间.

查看答案和解析>>

同步练习册答案