精英家教网 > 高中数学 > 题目详情

已知,且f(x)在区间有最小值,无最大值,则________.

答案:
解析:

  答案:

  解析:本小题主要针对考查三角函数图像对称性及周期性.

  依题在区间有最小值,无最大值,∴区间的一个半周期的子区间,且知的图像关于对称,∴,取


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•黄埔区一模)给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,称圆心在原点O、半径是
a2+b2
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
2
,0)
,其短轴的一个端点到点F的距离为
3

(1)求椭圆C和其“准圆”的方程;
(2)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求
AB
AD
的取值范围;
(3)在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天河区三模)设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a).
(1)设函数f(x)=Inx+
b+2x+1
(x>1)
,其中b为实数.
(i)求证:函数f(x)具有性质P(b);
(ii)求函数f(x)的单调区间.
(2)已知函数g(x)具有性质P(2),给定x1,x2∈(1,+∞),x1<x2,设m为实数,a=mx1+(1-m)x2,β=(1-m)x1+mx2,且a>1,β>1,若|g(a)-g(β)|<|g(x1)-g(x2)|,求m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•青浦区一模)在平面直角坐标系xoy中,已知圆C的圆心在第二象限,半径为2
2
且与直线y=x相切于原点O.椭圆
x2
a2
+
y2
9
=1
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)圆C上是否存在点Q,使O、Q关于直线CF(C为圆心,F为椭圆右焦点)对称,若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•静安区二模)已知动圆过定点F(
1
2
,0)
,且与定直线l:x=-
1
2
相切.
(1)求动圆圆心M的轨迹方程;
(2)设点O为坐标原点,P、Q两点在动点M的轨迹上,且满足OP⊥OQ,OP=OQ,求等腰直角三角形POQ的面积;
(3)设过点F(
1
2
,0)
的直线l与动点M的轨迹交于R、S相异两点,试求△ROS面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•黄埔区一模)已知,函数f(x)=2sinωx在[0,
π
4
]上递增,且在这个区间上的最大值是
3
,那么ω等于(  )

查看答案和解析>>

同步练习册答案