精英家教网 > 高中数学 > 题目详情
函数f(x)=Asin(ωx+ϕ)的图象如下图所示,为了得到g(x)=-Acosωx的图象,可以将f(x)的图象   ( )

A.向右平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向左平移个单位长度
【答案】分析:根据函数的部分图象,看出A=1,同时得到函数四分之一周期为,则周期T=π,求得ω=2,运用五点作图原理求得Φ,求出f(x)后,即可验证排除,也可运用诱导公式尝试.
解答:解:由图象看出振幅A=1,又,所以T=π,所以ω=2,再由+Φ=π,得Φ=,所以f(x)=sin(2x+),要得到g(x)=-Acosωx=-cos2x的图象,把f(x)=sin(2x+)中的x变为x-,即f(x-)=sin[2(x-)+]=sin(2x-)=-cos2x.所以只要将f(x)=sin(2x+)向右平移个单位长度就能得到g(x)的图象.
故选B.
点评:本题考查了函数f(x)=Asin(ωx+ϕ)的图象的变换问题,解决该题的关键是先求出f(x),同时要注意图象的平移只取决于x的变化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(2008)的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为
π
2

(1)求函数f(x)的解析式和当x∈[0,π]时f(x)的单调减区间;
(2)设a∈(0,
π
2
),则f(
a
2
)=2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+?)(其中A>0,ω>0,|?|<
π
2
)的图象如图所示,为了得到y=2cos2x的图象,则只要将f(x)的图象)向
平移
π
12
π
12
个单位长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+
π
4
)(其中x∈R,A>0,ω>0)的最大值为4,最小正周期为
3

(1)求函数f(x)的解析式;
(2)设a∈(
π
2
,π),且f(
2
3
a+
π
12
)=
1
2
,求cosa的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asinωx(A>0,ω>0)的部分图象如图所示,若△EFG是边长为2的正三角形,则f(1)=(  )
A、
6
2
B、
3
2
C、2
D、
3

查看答案和解析>>

同步练习册答案