精英家教网 > 高中数学 > 题目详情

为实数,首项为,公差为的等差数列的前项和为,满足

(Ⅰ)若=5,求及a1

(Ⅱ)求的取值范围.   

解:(Ⅰ)由题意知        

解得:    所以              ……………………6分

(Ⅱ)  故

 (或)所以所以

即d的取值范围是                  ……12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果一个数列的各项都是实数,且从第二项开始,每一项与它前一项的平方差是相同的常数,则称该数列为等方差数列,这个常数叫这个数列的公方差.
(1)设数列{an}是公方差为p的等方差数列,求an和an-1(n≥2,n∈N)的关系式;
(2)若数列{an}既是等方差数列,又是等差数列,证明该数列为常数列;
(3)设数列{an}是首项为2,公方差为2的等方差数列,若将a1,a2,a3,…,a10这种顺序的排列作为某种密码,求这种密码的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果一个数列的各项都是实数,且从第二项开始,每一项与它前一项的平方差是相同的常数,则称该数列为等方差数列,这个常数叫做这个数列的公方差.设数列{an}是首项为2,公方差为2的等方差数列,若将a1,a2,a3,…,a10这种顺序的排列作为某种密码,则这种密码的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如果一个数列的各项都是实数,且从第二项开始,每一项与它前一项的平方差是相同的常数,则称该数列为等方差数列,这个常数叫这个数列的公方差.
(1)设数列{an}是公方差为p的等方差数列,求an和an-1(n≥2,n∈N)的关系式;
(2)若数列{an}既是等方差数列,又是等差数列,证明该数列为常数列;
(3)设数列{an}是首项为2,公方差为2的等方差数列,若将a1,a2,a3,…,a10这种顺序的排列作为某种密码,求这种密码的个数.

查看答案和解析>>

科目:高中数学 来源:2011年辽宁省名校领航高考数学预测试卷(六)(解析版) 题型:选择题

如果一个数列的各项都是实数,且从第二项开始,每一项与它前一项的平方差是相同的常数,则称该数列为等方差数列,这个常数叫做这个数列的公方差.设数列{an}是首项为2,公方差为2的等方差数列,若将a1,a2,a3,…,a10这种顺序的排列作为某种密码,则这种密码的个数为( )
A.18个
B.256个
C.512个
D.1024个

查看答案和解析>>

科目:高中数学 来源:2010年高考数学新题型解析选编(6)(解析版) 题型:解答题

如果一个数列的各项都是实数,且从第二项开始,每一项与它前一项的平方差是相同的常数,则称该数列为等方差数列,这个常数叫这个数列的公方差.
(1)设数列{an}是公方差为p的等方差数列,求an和an-1(n≥2,n∈N)的关系式;
(2)若数列{an}既是等方差数列,又是等差数列,证明该数列为常数列;
(3)设数列{an}是首项为2,公方差为2的等方差数列,若将a1,a2,a3,…,a10这种顺序的排列作为某种密码,求这种密码的个数.

查看答案和解析>>

同步练习册答案