精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦点分别为F1和F2,过F2的直线L与椭圆C相交 A,B于两点,且直线L的倾斜角为60°,点F1到直线L的距离为2
3

(1)求椭圆C的焦距.
(2)如果
AF 2
=2
F2B
,求椭圆C的方程.
分析:(1)过F1作F1⊥l可直接根据直角三角形的边角关系得到
3
c=2
3
,求得c的值,进而可得到焦距的值.
(2)假设点A,B的坐标,再由点斜式得到直线l的方程,然后联立直线与椭圆方程消去x得到关于y的一元二次方程,求出两根,再由
AF 2
=2
F2B
,可得y1与y2的关系,再结合所求得到y1与y2的值可得到a,b的值,进而可求得椭圆方程.
解答:解:(1)设焦距为2c,由已知可得F1到直线l的距离
3
c=2
3
,故c=2.
所以椭圆C的焦距为4.
(2)设A(x1,y1),B(x2,y2),由题意知y1<0,y2>0,直线l的方程为y=
3
(x-2).
联立
y= 
3
(x-2)
x2
a2
+
y2
b2
=1
得(3a2+b2)y2+4
3
b2y-3b4=0.
解得y1=
-
3
b2(2+2a)
3a2+b2
,y2=
-
3
b2(2-2a)
3a2+b2

因为
AF 2
=2
F2B
,所以-y1=2y2
3
b2(2+2a)
3a2+b2
=2•
-
3
b2(2-2a)
3a2+b2

得a=3.而a2-b2=4,所以b=
5

故椭圆C的方程为
x2
9
+
y2
5
=1
点评:本题主要考查椭圆的基本性质.考查考生对椭圆基本性质的理解和认知,椭圆的基本性质是高考的重点内容,每年必考,一定要熟练掌握并能灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案