精英家教网 > 高中数学 > 题目详情

若f(x)是定义在R上的偶函数,且在区间(-∞,0)上是增函数,又f(a2+a+2)<f(a2-a+1),求a的取值范围.

解:∵a2+a+2=
又f(x)是定义在R上的偶函数,且在区间(-∞,0)上是增函数,
∴f(x)在(0,+∞)上是减函数,
由f(a2+a+2)<f(a2-a+1),得
a2+a+2>a2-a+1,解得a>-
∴a的取值范围是:a>-
分析:先判断a2+a+2、a2-a+1的范围,然后由f(x)的奇偶性及在(-∞,0)上的单调性可得f(x)在(0,+∞)上的单调性,由单调性可“脱去”不等式中的符号“f”.
点评:本题考查函数奇偶性、单调性的应用,解决本题的关键是利用函数的单调性去掉不等式中的符号“f”,化为具体不等式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若f(x)是定义在R上的函数,对任意的实数x,都有f(x+4)≤f(x)+4和f(x+2)≥f(x)+2,且f(1)=0,则f(2009)的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是定义在R上的偶函数,当x≥0时,f(x)=x(1-x),求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是定义在R上的函数,对任意的实数x,都有f(x+4)≤f(x)+4和f(x+2)≥f(x)+2且f(1)=4,则f(2009)的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是定义在R上的奇函数,且当x<0时,f(x)=
1
x+1
,则f(
1
2
)
=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=-
1x
在R上单调递增;
②若函数y=x2+2ax+1在(-∞,-1]上单调递减,则a≤1;
③若log0.7(2m)<log0.7(m-1),则m>-1;
④若f(x)是定义在R上的奇函数,则f(1-x)+f(x-1)=0.
其中正确的序号是
 

查看答案和解析>>

同步练习册答案