精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,a1,a2,a5成等比数列,且a1+a2+a5=13,则数列{an}的公差为(  )
A.2B.0C.2或0D.
1
2
或0
因为a1,a2,a5成等比数列得到(a22=a1a5
即(a1+d)2=a1(a1+4d),化简得d(d-2a1)=0,解得d=0,d=2a1
又因为a1+a2+a5=13即3a1+5d=13,把d=2a1代入解得a1=1,则d=2
所以数列{an}的公差为2或0
故选C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案