精英家教网 > 高中数学 > 题目详情
8.已知a>0,b>0,且a+2b=$\frac{4}{a}$+$\frac{2}{b}$
(1)证明a+2b≥4;
(2)若(a-1)(b-1)>0,求$\frac{1}{lo{g}_{2}a}$+$\frac{3}{lo{g}_{2}b}$的最小值.

分析 (1)根据基本不等式即可证明,
(2)根据对数的性质求出log2a+log2b=1,根据基本不等式即可求出.

解答 解:(1)证明:由$a+2b=\frac{4}{a}+\frac{2}{b}$(a>0,b>0)得,$a+2b=\frac{2a+4b}{a•b}$,即ab=2,
∴$a+2b≥2\sqrt{a•2b}=2\sqrt{4}=4$,当且仅当a=2b=2时取等号.
(2)∵log2a+log2b=log2(ab)=log22=1,
∴$\frac{1}{{{{log}_2}a}}+\frac{3}{{{{log}_2}b}}=(\frac{1}{{{{log}_2}a}}+\frac{3}{{{{log}_2}b}})•({log_2}a+{log_2}b)=4+\frac{{{{log}_2}b}}{{{{log}_2}a}}+\frac{{3{{log}_2}a}}{{{{log}_2}b}}$,
∵(a-1)(b-1)>0,
∴0<a<1,0<b<1或a>1,b>1,
则$\frac{{{{log}_2}b}}{{{{log}_2}a}}>0,\frac{{3{{log}_2}a}}{{{{log}_2}b}}>0$,
∴$4+\frac{{{{log}_2}b}}{{{{log}_2}a}}+\frac{{3{{log}_2}a}}{{{{log}_2}b}}≥4+2\sqrt{3}$,
即$\frac{1}{{{{log}_2}a}}+\frac{3}{{{{log}_2}b}}$的最小值为$4+2\sqrt{3}$.

点评 本题考查了基本不等式的应用,关键是掌握不等式成立的条件,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设D、E、F分别为△ABC三边BC、CA、AB的中点,则$\overrightarrow{DA}$+$\overrightarrow{EB}$+$\overrightarrow{FC}$=(  )
A.$\frac{1}{2}$$\overrightarrow{DA}$B.$\frac{1}{3}$$\overrightarrow{DA}$C.$\frac{1}{4}$$\overrightarrow{DA}$D.$\overrightarrow{0}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1与抛物线y2=-4x的焦点重合,椭圆E的离心率为$\frac{\sqrt{2}}{2}$,过点M (m,0)(m>$\frac{3}{4}$)作斜率不为0的直线l,交椭圆E于A,B两点,点P($\frac{5}{4}$,0),且$\overrightarrow{PA}$•$\overrightarrow{PB}$为定值.
(Ⅰ)求椭圆E的方程;
(Ⅱ)求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若至少存在一个x≥0,使得关于x的不等式x2≤4-|2x+m|成立,则实数m的取值范围是(  )
A.[-4,5]B.[-5,5]C.[4,5]D.[-5,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,并且经过点M(-$\sqrt{2}$,1).
(1)求椭圆的标准方程;
(2)若直线l与圆O:x2+y2=1相切,与椭圆C相交于A,B两点,求△AOB的面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(0)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在三棱柱ABC-A1B1C1中,△ABC是等边三角形,BC=CC1,D是A1C1中点.
(Ⅰ)求证:A1B∥平面B1CD;
(Ⅱ)当三棱锥C-B1C1D体积最大时,求点B到平面B1CD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\left\{\begin{array}{l}x(x+4),x≥0\\ x(x-4),x<0\end{array}\right.$,则f(-3)=(  )
A.-3B.21C.3D.-21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=\left\{\begin{array}{l}{e^x}+m\;-1,x≥0\\ ax+b,x<0\end{array}\right.$其中m<-1,对于任意x1∈R且x1≠0,均存在唯一实数x2,使得f(x2)=f(x1),且x1≠x2,若|f(x)|=f(m)有4个不相等的实数根,则a的取值范围是(  )
A.(0,1)B.(-1,0)C.(-2,-1)∪(-1,0)D.(-2,-1)

查看答案和解析>>

同步练习册答案