精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=(m-1)x2+2mx+3为偶函数,则f(x)的单调递增区间为(-∞,0).

分析 f(x)=(m-1)x2+2mx+3若为偶函数,则表达式中显然不能含有一次项2mx,故m=0,由二次函数的性质写出单调增区间.

解答 解:若m=1,则函数f(x)=2x+3,则f(-x)=-2x+3≠f(x),此时函数不是偶函数,所以m≠1
若m≠1,且函数f(x)=(m-1)x2+2mx+3是偶函数,
则 一次项2mx=0恒成立,则 m=0,
因此,函数为 f(x)=-x2+3,
∴f(x)的单调递增区间为(-∞,0).
故答案为:(-∞,0).

点评 本题考查函数的奇偶性的应用,以及二次函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.垂直于x轴的直线交抛物线y2=4x于A,B两点,且|AB|=2$\sqrt{3}$,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.己知直线l:(a-1)x+y+a+1=0及定点A(3,4).
(1)问a为何值时,直线l过点A(3,4)?
(2)直线l恒过定点B,求点B的坐标;
(3)问a为何值,点A到直线l的距离最大?并求最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设a=($\frac{1}{2}$)${\;}^{\frac{3}{4}}$,b=($\frac{1}{5}$)${\;}^{\frac{3}{4}}$,c=($\frac{1}{2}$)${\;}^{\frac{1}{2}}$,则a,b,c的大小关系为c>a>b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=|x2-4x|,g(x)=ln|x-2|,则方程f(x)=g(x)所有实根之和为(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求点P(3,4)到直线x+y+2=0的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC中,2cos2C=8sin2$\frac{A+B}{2}$-7.
(1)求角C的大小;
(2)求cos2A+2cos2B的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知抛物线y=$\frac{{x}^{2}}{4}$与直线y=$\frac{3}{4}$x+1交于点P,Q,则如图所示阴影部分的面积为(  )
A.$\frac{65}{12}$B.$\frac{85}{16}$C.$\frac{143}{24}$D.$\frac{95}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.实数a,b∈R,i是虚数单位,若a+2i与2-bi互为共轭复数,则a+b=4.

查看答案和解析>>

同步练习册答案