精英家教网 > 高中数学 > 题目详情
已知各项均为正数的数列{an}的前n项和为Sn,满足S1>1,且6Sn=(an+1)(an+2),n∈N*,则数列{an}通项公式为an=
3n-1
3n-1
分析:由已知可得6Sn-1=(an-1+1)(an-1+2),两式相减可得,an-an-1=3,结合等差数列的通项公式可求
解答:解:∵6Sn=(an+1)(an+2),n∈N*
∴6Sn-1=(an-1+1)(an-1+2)
两式相减可得,6Sn-6Sn-1
=an2+3an+2-an-12-3an-1-2
∴6an=an2+3an+2-an-12-3an-1-2
an2-an-12-3an-3an-1=0
∴(an-an-1-3)(an+an-1)=0
∵an>0
∴an-an-1=3
∵6S1=(a1+1)(a1+2),S1>1
∴a1=2
∴{an}是以2为首项,以3为公差的等差数列
∴an=2+3(n-1)=3n-1
故答案为:3n-1
点评:本题主要考查了利用递推公式an=
S1,n=1
Sn-Sn-1,n≥2
求解数列的通项公式,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较数学公式数学公式的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:青岛二模 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:《第2章 数列》、《第3章 不等式》2010年单元测试卷(陈经纶中学)(解析版) 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:2012年高考复习方案配套课标版月考数学试卷(二)(解析版) 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较的大小,并加以证明.

查看答案和解析>>

同步练习册答案