已知函数f(x)=x2-2lnx,h(x)=x2-x+a.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)设函数k(x)=f(x)-h(x),若函数k(x)在[1,3]上恰有两个不同零点,求实数a的取值范围.
分析:(I)先在定义域内求出f′(x)=0的值,再讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值;
(II)先求出函数k(x)的解析式,然后研究函数k(x)在[1,3]上的单调性,根据函数k(x)在[1,3]上恰有两个不同零点,建立不等关系
,最后解之即可.
解答:解:(Ⅰ)∵
f′(x)=2x-,令f′(x)=0,∵x>0∴x=
所以f(x)的极小值为1,无极大值.(7分)
(Ⅱ)∵
| x |
(0,1) |
1 |
(1,+∞) |
| f′(x) |
_ |
0 |
+ |
| f(x) |
减 |
1 |
增 |
k(x)=f(x)-h(x)=-2lnx+x-a∴k′(x)=-+1,
若k′(x)=0,则x=2
当x∈[1,2)时,f′(x)<0;
当x∈(2,3]时,f′(x)>0.
故k(x)在x∈[1,2)上递减,在x∈(2,3]上递增.(10分)
∴
∴∴2-2ln2<a≤3-2ln3.
所以实数a的取值范围是:(2-2ln2,3-2ln3](15分)
点评:本题主要考查了利用导数研究函数的极值,以及函数的零点等有关基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、化归与转化思想,属于中档题.