精英家教网 > 高中数学 > 题目详情
5.如图,在矩形ABCD中,点E为边AD上的点,点F为边CD的中点,AB=AE=$\frac{2}{3}$AD=4,现将△ABE沿BE边折至△PBE位置,且平面PBE⊥平面BCDE.
(1)求证:平面PBE⊥平面PEF;
(2)求四棱锥P-BCEF的体积.

分析 (1)在Rt△DEF中,由已知可得∠DEF=45°,在Rt△ABE中,得到∠AEB=45°,则可得到EF⊥BE,结合平面PBE⊥平面BCDE,可得EF⊥平面PBE,从而得到平面PBE⊥平面PEF;
(2)过P做PO⊥BE,由面面垂直的性质及线面垂直的判定得到PO⊥平面BCDE,即PO为四棱锥P-BCFE的高.把S四边形BCFE转化为S矩形ABCD-S△ABE-S△DEF,求值后代入棱锥的体积公式得答案.

解答 (1)证明:如图,
在Rt△DEF中,∵ED=DF,∴∠DEF=45°.
在Rt△ABE中,∵AE=AB,∴∠AEB=45°,
∴∠BEF=90°,则EF⊥BE.
∵平面PBE⊥平面BCDE,且平面PBE∩平面BCDE=BE,
∴EF⊥平面PBE,
∵EF?平面PEF,∴平面PBE⊥平面PEF;
(2)解:过P做PO⊥BE,
∵PO?平面PBE,平面PBE⊥平面BCDE且平面PBE∩平面BCDE=BE,
∴PO⊥平面BCDE,
四棱锥P-BCFE的高h=PO=$2\sqrt{2}$.
S四边形BCFE=S矩形ABCD-S△ABE$-{S}_{△DEF}=6×4-\frac{1}{2}×4×4-\frac{1}{2}×2×2=14$,
则${V}_{P-BCFE}=\frac{1}{3}{S}_{四边形BCFE}•h$=$\frac{1}{3}×14×2\sqrt{2}=\frac{28\sqrt{2}}{3}$.

点评 本题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.从一个有红、橙、黄、绿这四色球的球袋中(每种就一个),随机摸出两个球.
(1)随机摸出2个球,设红球为X,则随机变量X的概率分布为
X01
P0.50.5

(2)求恰好摸出两个球是红色和绿色的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,两条过原点.D的直线l1,l2分别与x轴、y轴正方向成30°的角,点P(x1,y1)在直线l1上运动,点Q(x2,y2)在直线l2上运动,且线段PQ的长度为2.
(I)若x=$\frac{2\sqrt{3}}{3}$x1 y=$\sqrt{3}$x2,求动点M(x,y)的轨迹C的方程;
(Ⅱ)过(-1,0)的直线l与(I)中轨迹C相交于A,B两点,若△ABO的面积为$\frac{6\sqrt{2}}{7}$,求圆心在原点O且与直线l相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.分别写出三角形数构成的数列的第5项,第6项和第7项,并写出它的一个递推公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知正方体ABCD-A1B1C1D1的棱长为1,且点E为棱AB上任意一个动点.当点B1到平面A1EC的距离为$\frac{{\sqrt{21}}}{6}$时,点E所有可能的位置有几个2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{1-|1-x|,x∈(-∞,2)}\\{2f(x-2),x∈[2,+∞)}\end{array}\right.$,设方程f(x)=2${\;}^{\frac{x-1}{2}}$的根从小到大依次为x1,x2,…xn,…,n∈N*,则数列{f(xn)}的前n项和为(  )
A.n2B.n2+nC.2n-1D.2n+1-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图所示,某服装设计师要在一块条形布料上画一个等边△ABC作为点缀,使A、B、C三点分别落在条形布料的线条上,已知条形布料相邻横线间的距离为3厘米,则等边△ABC的边长应为2$\sqrt{21}$厘米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,∠A,∠B,∠C对应的边分别是a,b,c,且4cosC•sin2$\frac{C}{2}$+cos2C=0
(1)求∠C的大小;
(2)若函数f(x)=sin(2x-C),求f(x)的单调区别;
(3)若3ab=25-c2,求△ABC面积的最大值并判断此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}$=1过其右焦点F的直线l与椭圆相交于A、B两点,若点P为(4,0),设$\overrightarrow{FA}=λ\overrightarrow{FB}$,λ∈[-2,-1],求|$\overrightarrow{PA}+\overrightarrow{PB}$|取最大值时直线l的方程.

查看答案和解析>>

同步练习册答案