精英家教网 > 高中数学 > 题目详情

已知集合A={x|-2≤x≤4},B={x|m+1≤x≤2m-1},A∩B=?,则实数m的取值范围是________.

(-∞,2)∪(3,+∞)
分析:分两种情况考虑:当B为空集时,A与B交集为空集,求出m+1大于2m-1,列出不等式,求出解集得到m的范围;当B不为空集时,列出关于m的不等式,求出不等式的解集得到m的范围,综上,得到满足题意m的范围.
解答:当B=∅时,A∩B=∅,此时m+1>2m-1,解得:m<2;
当B≠∅时,由题意得:m+1>4或2m-1<-2,
解得:m>3或m<-
综上,实数m的范围为(-∞,-2)∪(3,+∞).
故答案为:(-∞,-2)∪(3,+∞)
点评:此题考查了交集及其运算,以及空集的定义,熟练掌握交集、空集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|
x-2ax-(a2+1)
<0},B={x|x<5a+7},若A∪B=B
,则实数a的值范围是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x
log
1
2
(x+2)>-3
x2≤2x+15
,B={x|m+1≤x≤2m-1}

(I)求集合A;
(II)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠∅,求实数k的取值范围.

查看答案和解析>>

同步练习册答案