精英家教网 > 高中数学 > 题目详情

若数列{an}中,an=数学公式,n∈N+,则数列{an}中的项的最小值为________.

4
分析:将数列的通项看成关于n的函数,将通项写成,利用基本不等式判断出数列的最小值,根据数列自变量的特殊性,求出数列的最小值即可.
解答:an===≥2-4=4,
当且仅当n+2=,即n=2时取等号,
则数列{an}中的项的最小值为 4.
故答案为:4.
点评:解决数列问题时,常将数列看成关于项数n的函数,处理函数的方法在数列中都能使用.注意数列是特殊的函数:自变量是正整数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若数列{an}中,对任意n∈N*,都有
an+2-an+1
an+1-an
=k
(k为常数),则称{an}为等差比数列.下列对“等差比数列”的判断:
①k不可能为0;
②等差数列一定是等差比数列;
③等比数列一定是等差比数列;
④通项公式为an=a•bn+c(a≠0,b≠0,1)的数列一定是等差比数列.
其中正确的判断为(  )
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}中,a1=
1
3
,且对任意的正整数p、q都有ap+q=apaq,则an=(  )
A、(
1
3
)n-1
B、(
1
3
)n-1
C、(
1
3
)
n
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}中,an=43-3n,则Sn最大值n=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}中an=-n2+6n+7,则其前n项和Sn取最大值时,n=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}中,an=
100n
n!
,则{an}为(  )

查看答案和解析>>

同步练习册答案