科目:高中数学 来源: 题型:
已知二次函数f(x)=ax2+bx+c(x∈R)的部分对应值如表.
| x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
| y | -24 | -10 | 0 | 6 | 8 | 6 | 0 | -10 | -24 | … |
则使ax2+bx+c>0成立的x的取值范围是( )
A.(-10,-1)∪(1+∞)
B.(-∞,-1)∪(3+∞)
C.(-1,3)
D.(0,+∞)
查看答案和解析>>
科目:高中数学 来源:2011年福建省罗源县第一中学高二上学期期中考试文科数学 题型:解答题
(本小题满分12分) 如图,A,B,C是三个汽车站,AC,BE是直线型公路.已知AB=120 km,∠BAC=75°,∠ABC=45°.有一辆车(称甲车)以每小时96(km)的速度往返于车站A,C之间,到达车站后停留10分钟;另有一辆车(称乙车)以每小时120(km)的速度从车站B开往另一个城市E,途经车
站C,并在车站C也停留10分钟.已知早上8点时甲车从车站A、乙车从车站B同时开出.
(1)计算A,C两站距
离,及B,C两站距离;(2)若甲、乙两车上各有一名旅客需要交换到对方汽车上,问能否在车站C处利用停留时间交换.(3)求10点时甲、乙两车的距离.(可能用到的参考数据:
,
,
,
)![]()
查看答案和解析>>
科目:高中数学 来源:2014届山东省高一第二学期期中考试数学试卷(解析版) 题型:解答题
已知sina=
,aÎ(
,p),cosb=-
,b是第三象限的角.
⑴ 求cos(a-b)的值;
⑵ 求sin(a+b)的值;
⑶ 求tan2a的值.
【解析】第一问中∵ aÎ(
,p),∴ cosa=-
=-
, ∵ b是第三象限的角,
∴ sinb=-
=-
,
cos(a-b)=cosa·cosb+sina·sinb =(-
)×(-
)+
×(-
)=-
⑵ 中sin(a+b)=sina·cosb+cosa·sinb =
×(-
)+(-
)×(-
)=
⑶ 利用二倍角的正切公式得到。∵tana=
=-
∴tan2a=
=
=-
解∵ aÎ(
,p),∴ cosa=-
=-
, …………1分
∵ b是第三象限的角,∴ sinb=-
=-
, ………2分
⑴ cos(a-b)=cosa·cosb+sina·sinb …………3分
=(-
)×(-
)+
×(-
)=-
………………5分
⑵ sin(a+b)=sina·cosb+cosa·sinb ……………………6分
=
×(-
)+(-
)×(-
)=
…………………8分
⑶ ∵tana=
=-
…………………9分
∴tan2a=
………………10分
=
=-![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com