分析 由已知中的式子$[\sqrt{1}]+[\sqrt{2}]+[\sqrt{3}]=3$,[$\sqrt{4}$]+[$\sqrt{5}$]+[$\sqrt{6}$]+[$\sqrt{7}$]+[$\sqrt{8}$]=10,[$\sqrt{9}$]+[$\sqrt{10}$]+[$\sqrt{11}$]+[$\sqrt{12}$]+[$\sqrt{13}$]+[$\sqrt{14}$]+[$\sqrt{15}$]=21,…分析出式子两边的排列规律,可得答案.
解答 解:由已知中:
$[\sqrt{1}]+[\sqrt{2}]+[\sqrt{3}]=3$=1×3;
[$\sqrt{4}$]+[$\sqrt{5}$]+[$\sqrt{6}$]+[$\sqrt{7}$]+[$\sqrt{8}$]=10=2×5;
[$\sqrt{9}$]+[$\sqrt{10}$]+[$\sqrt{11}$]+[$\sqrt{12}$]+[$\sqrt{13}$]+[$\sqrt{14}$]+[$\sqrt{15}$]=21=3×7;
…
归纳可得:
第n个式子为:[$\sqrt{{n}^{2}}$]+[$\sqrt{{n}^{2}+1}$]+[$\sqrt{{n}^{2}+2}$]+…+[$\sqrt{{(n+1)}^{2}-1}$]=n(2n+1);
故第n个等式的等号右边的结果为:n(2n+1),
故答案为:n(2n+1)
点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{4π}{3}$ | D. | $\frac{5π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com