精英家教网 > 高中数学 > 题目详情
已知PA⊥平面ABC,点H、G分别是△ABC、△PBC的垂心,如图2-3-4.求证:HG⊥平面PBC.

图2-3-4

思路分析:欲证HG⊥平面PBC,需证HG与平面PBC内的两条相交直线垂直.利用“垂心和三角形顶点的连线垂直于对边”的性质,可使孤立的点G、H与各边联系起来,并得到垂直关系,从而找到解题突破口.首先连结AH,并延长交BC于点D,连结PD,则根据线面垂直及已知条件得PD⊥BC,AD⊥BC,从而BC⊥平面PAD,且BC⊥HG.再连结并延长BG、BH分别交对边于E、F,则PC⊥BE且BF⊥AC,从而PC⊥BF,推出PC⊥平面BEF,PC⊥HG.

证明:连结AH并延长交BC于D,连结PD.

H为△ABC的垂心AD⊥BC.

BC⊥PDG∈PD且HC⊥BC.

连结并延长BG、BH分别交PC、AC于点E、F,连结EF.

H为△ABC的垂心,?

GH⊥平面PBC.

  绿色通道:解决立体几何中的有关垂直关系的问题,常常要进行多次线线垂直和线面垂直之间的转化,这充分体现了数学化归思想的重要性和优越性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,三棱锥P-ABC中,已知PA⊥平面ABC,PA=3,PB=PC=BC=6,求二面角P-BC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)如图,已知PA⊥平面ABC,且PA=
2
,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(1)求证:PC⊥平面ADE;
(2)求点D到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐汇区一模)如图,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D,E分别是BC,AP的中点.
(1)求异面直线AC与ED所成的角的大小;
(2)求△PDE绕直线PA旋转一周所构成的旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐汇区一模)如图,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D是AB的中点.
(1)求PD与平面PAC所成的角的大小;
(2)求△PDB绕直线PA旋转一周所构成的旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城三模)如图,三棱锥P-ABC中,已知PA⊥平面ABC,△ABC是边长为2的正三角形,D,E分别为PB,PC中点.
(1)若PA=2,求直线AE与PB所成角的余弦值;
(2)若平面ADE⊥平面PBC,求PA的长.

查看答案和解析>>

同步练习册答案