精英家教网 > 高中数学 > 题目详情
数列{an}中,an>0,且{anan+1}是公比为q(q>0)的等比数列,满足anan+1+an+1an+2>an+2an+3(n∈N),则公比q的取值范围是(  )
分析:法1:由{anan+1}是公比为q(q>0)的等比数列,设此等比数列的公比为q,利用等比数列的通项公式表示出anan+1的通项,利用得到的通项化简已知的不等式,根据an>0且q>0,得到a1a2>0,在不等式左右两边同时除以a1a2,得出关于公比q的不等式,求出不等式的解集即可得到q的取值范围;
法2:把n=1代入已知的不等式,得到a1a2+a2a3>a3a4,由{anan+1}是公比为q(q>0)的等比数列,设此等比数列的公比为q,利用等比数列性质化简后,根据a1a2>0,在不等式左右两边同时除以a1a2,得出关于公比q的不等式,求出不等式的解集即可得到q的取值范围.
解答:解:法1:∵{anan+1}是公比为q(q>0)的等比数列,
∴设anan+1=(a1a2)qn-1
不等式可化为(a1a2)qn-1+(a1a2)qn>(a1a2)qn+1
∵an>0,q>0,
∴q2-q-1<0,
解得:0<q<
1+
5
2

法2:令n=1,不等式变为a1a2+a2a3>a3a4
a1a2+a1a2?q>a1a2q2
∵a1a2>0,∴1+q>q2
解得:0<q<
1+
5
2

故选B
点评:此题考查了等比数列的性质,等比数列的通项公式,以及一元二次不等式的解法,熟练掌握等比数列的性质是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,如果对任意n∈N+都有
an+2-an+1an+1-an
=p(p为常数),则称数列{an}为“等差比”数列,p叫数列{an}的“公差比”.现给出如下命题:
(1)等差比数列{an}的公差比p一定不为零;
(2)若数列{an}(n∈N+)是等比数列,则数列{an}一定是等差比数列;
(3)若等比数列{an}是等差比数列,则等比数列{an}的公比与公差比相等.
则正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•南京一模)已知函数f(x)=2+
1
x
.数列{an}中,a1=a,an+1=f(an)(n∈N*).当a取不同的值时,得到不同的数列{an},如当a=1时,得到无穷数列1,3,
7
3
17
7
,…;当a=-
1
2
时,得到有穷数列-
1
2
,0.
(1)求a的值,使得a3=0;
(2)设数列{bn}满足b1=-
1
2
bn=f(bn+1)(n∈N*)
,求证:不论a取{bn}中的任何数,都可以得到一个有穷数列{an};
(3)求a的取值范围,使得当n≥2时,都有
7
3
an
<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)数列{an}中,a1=
5
7
an+1=2-
1
an
(n∈N*)
;数列{bn}满足bn=
1
an-1
(n∈N*)

(I)求证:数列{bn}是等差数列,并求出{an}的通项公式an
(Ⅱ)求{an}中最大项与最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

关于数列有下列四个判断:
①若a,b,c,d成等比数列,则a+b,b+c,c+d也成等比数列;
②若数列{an}是等比数列,则Sn,S2n-Sn,S3n-S2n…也成等比数列;
③若数列{an}既是等差数列也是等比数列,则{an}为常数列;
④数列{an}的前n项的和为Sn,且数学公式,则{an}为等差或等比数列;
⑤数列{an}为等差数列,且公差不为零,则数列{an}中不会有am=an(m≠n).
其中正确命题的序号是________.(请将正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,如果存在非零常数T使得an=an+T对于任意非零自然数n均成立,那么就称数列{an}为周期数列,其中T叫做数列{an}的周期,已知数列{an}满足an+1=|anan1|(n≥2,n∈N),如果a1=1,a2=a(a∈R,a≠0),当数列{an}的周期最小时,该数列前2005项的和是                                                  

A.668                     B.669                    C.1336                  D.1337

查看答案和解析>>

同步练习册答案