精英家教网 > 高中数学 > 题目详情

设数列{an}满足a1=1,a2=2,对任意的n∈N*,an+2是an+1与an的等差中项.
(1)设bn=an+1-an,证明数列{bn}是等比数列,并求出其通项公式;
(2)写出数列{an}的通项公式(不要求计算过程),令数学公式,求数列{cn}的前n项和Sn

解:(1)∵an+2是an+1与an的等差中项.
∴2an+2=an+1+an
∵bn=an+1-an,∴bn+1=an+2-an+1=(an+1+an)-an+1=-bn
∵a1=1,a2=2,
∴b1=a2-a1=1
∴数列{bn}是以1为首项,-为公比的等比数列,通项公式为bn=
(2)由(1)知,an+1-an=
∴an=a1+(a2-a1)+…+(an-an-1)=1+1+…+=
=
∴Sn=++…+
Sn=++…+
①-②可得Sn=1+++…+-=
∴数列{cn}的前n项和Sn=
分析:(1)根据an+2是an+1与an的等差中项,可得2an+2=an+1+an,由bn=an+1-an,可得bn+1=an+2-an+1=-bn,从而可得数列{bn}是以1为首项,-为公比的等比数列,可求通项公式;
(2)利用累加法可得数列{an}的通项公式,进而可得=,利用错位相减法可求数列{cn}的前n项和.
点评:本题考查数列递推式,考查等比数列的证明与通项,考查错位相减法求数列的和,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}满足a1=1,且对任意的n∈N*,点Pn(n,an)都有
.
PnPn+1
=(1,2)
,则数列{an}的通项公式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照一模)若数列{bn}:对于n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.如:若cn=
4n-1,当n为奇数时
4n+9,当n为偶数时.
则{cn}
是公差为8的准等差数列.
(I)设数列{an}满足:a1=a,对于n∈N*,都有an+an+1=2n.求证:{an}为准等差数列,并求其通项公式:
(Ⅱ)设(I)中的数列{an}的前n项和为Sn,试研究:是否存在实数a,使得数列Sn有连续的两项都等于50.若存在,请求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照一模)若数列{bn}:对于n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.如数列cn:若cn=
4n-1,当n为奇数时
4n+9,当n为偶数时
,则数列{cn}是公差为8的准等差数列.设数列{an}满足:a1=a,对于n∈N*,都有an+an+1=2n.
(Ⅰ)求证:{an}为准等差数列;
(Ⅱ)求证:{an}的通项公式及前20项和S20

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
π
2
)=0
cn=an+
1
2an
,则数列{cn}的前n项和Sn为(  )
A、
n2+n
2
-
1
2n
B、
n2+n+4
2
-
1
2n-1
C、
n2+n+2
2
-
1
2n
D、
n2+n+4
2
-
1
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足:a1=2,an+1=1-
1
an
,令An=a1a2an,则A2013
=(  )

查看答案和解析>>

同步练习册答案