精英家教网 > 高中数学 > 题目详情
4.已知数列{an}的前n项和为Sn=3n2+8n,数列{bn}是等差数列,且an=bn+bn+1
(1)求数列{an},{bn}的通项公式an,bn
(2)设cn=$\frac{{{{({a_n}+1)}^{n+1}}}}{{{{({b_n}+2)}^n}}}$,且λ>$\frac{{{c_{n+1}}}}{c_n}$对任意的n∈N*恒成立,求实数λ的取值范围.

分析 (1)数列{an}的前n项和为Sn=3n2+8n,当n≥2时,an=Sn-Sn-1,当n=1时,a1=S1.即可得出.数列{bn}是等差数列,且an=bn+bn+1,可得11=b1+b2,17=b2+b3,解得d,b1
(2)cn=$\frac{{{{({a_n}+1)}^{n+1}}}}{{{{({b_n}+2)}^n}}}$=3×2n+1(n+1),可得λ>$\frac{{{c_{n+1}}}}{c_n}$=2$(1+\frac{1}{n+1})$,利用数列的单调性即可得出.

解答 解:(1)数列{an}的前n项和为Sn=3n2+8n,
当n≥2时,an=Sn-Sn-1=3n2+8n-[3(n-1)2+8(n-1)]=6n+5,
当n=1时,a1=S1=11也成立.∴an=6n+5.
∵数列{bn}是等差数列,且an=bn+bn+1
∴11=b1+b2,17=b2+b3
相减可得:2d=6,解得公差d=3,代入11=b1+b2,可得2b1+3=11,解得b1=4.
∴bnz=4+3(n-1)=3n+1.
(2)cn=$\frac{{{{({a_n}+1)}^{n+1}}}}{{{{({b_n}+2)}^n}}}$=$\frac{(6n+6)^{n+1}}{(3n+3)^{n}}$=3×2n+1(n+1),
∴λ>$\frac{{{c_{n+1}}}}{c_n}$=2$(1+\frac{1}{n+1})$,
又λ>$\frac{{{c_{n+1}}}}{c_n}$对任意的n∈N*恒成立,
∴λ>$[2(1+\frac{1}{n+1})]_{max}$,
由{1+$\frac{1}{n+1}$}单调递减,∴$[2(1+\frac{1}{n+1})]_{max}$=3,
∴λ>3.

点评 本题考查了等差数列的通项公式、数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)为偶函数,且函数图象的相邻两条对称轴间的距离为$\frac{π}{2}$
(1)求f($\frac{π}{8}$)
(2)求函数f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某班主任对全班50名学生进行了作业量多少的调查,数据如表:
认为作业多认为作业不多总数
喜欢玩电脑游戏18927
不喜欢玩电脑游戏81523
总数262450
则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为(  )
A.99%B.95%C.90%D.无充分依据

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知矩形ABCD的周长为18,把它沿图中的虚线折成正四棱柱,则这个正四棱柱的外接球表面积的最小值为36π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对于△ABC,有如下四个命题:
①若sin2A=sin2B,则△ABC为等腰三角形;
②若sinB=cosA,则△ABC是直角三角形;
③若sin2A+sin2B>sin2C,则△ABC是锐角三角形;
④若$\frac{a}{cosA}=\frac{b}{cosB}=\frac{c}{cosC}$,则△ABC是等边三角形.
其中正确的项有④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx,h(x)=ax(a∈R).
(1)函数f(x)的图象与h(x)的图象无公共点,求实数a的取值范围;
(2)是否存在实数m,使得对任意的$x∈({\frac{1}{2},+∞})$,都有函数y=f(x)+$\frac{m}{x}$的图象在$g(x)={\frac{ex}{x}^{\;}}$的图象的下方?若存在,求出整数m的最大值;若不存在,请说明理由.($\sqrt{e}+\frac{1}{2}$ln2≈1.99)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow a,\;\overrightarrow b,\;\overrightarrow c$是同一平面内的三个向量,其中$\overrightarrow a=({1,\;2})$.
(1)若$|{\overrightarrow c}|=2\sqrt{5}$,且向量$\overrightarrow c$与向量$\overrightarrow a$反向,求$\overrightarrow c$的坐标;
(2)若$|{\overrightarrow b}|=\frac{{\sqrt{5}}}{2}$,且$(\overrightarrow a+2\overrightarrow b)•(2\overrightarrow a-\overrightarrow b)=\frac{15}{4}$,求$\overrightarrow a$在$\overrightarrow b$方向上的射影.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知α,β是两个不同的平面,m,n是两条不同的直线,则下列五个命题:
①如果m⊥α,n∥β,α∥β,那么m⊥n;
②如果m∥α,n∥β,m⊥n,那么α∥β;
③如果m⊥α,n⊥β,m⊥n,那么α⊥β;
④如果m⊥α,n∥β,m⊥n,那么α∥β;
⑤如果m∥α,m∥β,α∩β=n,那么m∥n.
其中正确的命题有①③⑤.(填写所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点P($\sqrt{3}$,1),Q(cosx,sinx),O为坐标原点,函数f(x)=$\overrightarrow{OP}$•$\overrightarrow{QP}$.
(1)求函数f(x)的最小值及此时x的值;
(2)若A为△ABC的内角,f(A)=4,BC=3,△ABC的面积为$\frac{3\sqrt{3}}{4}$,求△ABC的周长.

查看答案和解析>>

同步练习册答案