精英家教网 > 高中数学 > 题目详情

已知f(x)=|x2-2x|,a<b<c<d且f(a)=f(b)=f(c)=f(d)则a+2b+2c+d=


  1. A.
    6
  2. B.
    8
  3. C.
    4
  4. D.
    5
A
分析:图解法:画出函数f(x)=|x2-2x|,的图象,根据图象分析a与d、b与c的和,结合图形的对称性,从而求出a+2b+2c+d的取值即可.
解答:解:先画出函数f(x)=|x2-2x|的图象
∵a<b<c<d且f(a)=f(b)=f(c)=f(d)
∴a与d、b与c都关于直线x=1的对称,
∴a+d=2.b+c=2,
则a+2b+2c+d=6
故选A.
点评:此题是中档题.考查利用函数图象分析解决问题的能力,以及绝对值函数图象的特点,体现数形结合的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2+ax+b(a,b∈R的定义域为[-1,1].
(1)记|f(x)|的最大值为M,求证:M≥
1
2
.
(2)求出(1)中的M=
1
2
时,f(x)
的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+x+1,则f(
2
)
=
 
;f[f(
2
)
]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+2x,数列{an}满足a1=3,an+1=f′(an)-n-1,数列{bn}满足b1=2,bn+1=f(bn).
(1)求证:数列{an-n}为等比数列;
(2)令cn=
1
an-n-1
,求证:c2+c3+…+cn
2
3

(3)求证:
1
3
1
1+b1
+
1
1+b2
+…+
1
1+bn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-x+k,若log2f(2)=2,
(1)确定k的值;
(2)求f(x)+
9f(x)
的最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在区间(-∞,(a+1)2]上都是减函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,比较f(1)和
16
的大小.

查看答案和解析>>

同步练习册答案