精英家教网 > 高中数学 > 题目详情

(10分)(选修4-l:几何证明选讲)

如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接

AD交⊙O于点E,连接BE与AC交于点F.

⑴判断BE是否平分∠ABC,并说明理由;

⑵若AE=6,BE=8,求EF的长.

解析:⑴BE平分∠ABC.     ………1分

∵CD=AC,∴∠D=∠CAD.

∵AB=AC,∴∠ABC=∠ACB

∵∠EBC=∠CAD,∴∠EBC=∠D=∠CAD.        ……………………4分

∵∠ABC=∠ABE+∠EBC,∠ACB=∠D+∠CAD,

∴∠ABE=∠EBC,即BE平分∠ABC.             ……………………6分

⑵由⑴知∠CAD=∠EBC =∠ABE.

  ∵∠AEF=∠AEB,∴△AEF∽△BEA.             ……………………8分

,∵AE=6, BE=8.

∴EF=.                          ……………………10分
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A、选修4-1:几何证明选讲 
如图,PA与⊙O相切于点A,D为PA的中点,
过点D引割线交⊙O于B,C两点,求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
已知矩阵M=
12
2x
的一个特征值为3,求另一个特征值及其对应的一个特征向量.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的方程为ρ=2
2
sin(θ+
π
4
)
,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=t
y=1+2t
(t为参数),判断直线l和圆C的位置关系.
D.选修4-5:不等式选讲
求函数y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

A.选修4-1:几何证明选讲
如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC
交于点D.求证:ED2=EB•EC.
B.选修4-2:矩阵与变换
求矩阵M=
-14
26
的特征值和特征向量.
C.选修4-4:坐标系与参数方程
在以O为极点的极坐标系中,直线l与曲线C的极坐标方程分别是ρcos(θ+
π
4
)=
3
2
2
和ρsin2θ=4cosθ,直线l与曲线C交于点.A,B,C,求线段AB的长.
D.选修4-5:不等式选讲
对于实数x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城一模)[A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-l:几何证明选讲

如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F.

⑴判断BE是否平分∠ABC,并说明理由;

⑵若AE=6,BE=8,求EF的长.

查看答案和解析>>

同步练习册答案