精英家教网 > 高中数学 > 题目详情
设α,β,γ为两两不重合的平面,l、m、n为两两不重合的直线,给出下列四个命题:
①若α⊥γ,β⊥γ,则α∥β;
②若m?α,n?α,m∥β,n∥β,则α∥β;
③若α∥β,l?α,则l∥β;
④若α∩β═l,β∩γ=m,γ∩a=n,l∥γ,则m∥n.
其中正确命题的个数有
2
2
个.
分析:①利用面面垂直的性质判断.②利用线面平行的性质判断.③利用面面平行的性质和线面平行的判定定理判断.④利用线面平行的性质判断.
解答:解:①根据面面垂直的性质可知,垂直于同一平面的两个平面可能平行,可能相交,所以①错误.
②根据面面平行的判定定理要求直线m,n必须是相交直线,所以结论不成立,所以②错误.
③根据面面平行的性质可知,面面平行,一个平面内的任何一条直线必和平面平行,所以③正确.
④因为l∥γ,β∩γ=m,γ∩a=n,所以l∥m,l∥n,根据平行的传递性可知,m∥n成立.
故答案为:2.
点评:本题主要考查空间直线和平面位置关系的判断,要求熟练掌握空间平面和平面,直线和平面之间平行和垂直的判定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:
①若α⊥γ,β⊥γ,则α∥β;
②若α∥β,l?α,则l∥β;
③若m?α,n?α,m∥β,n∥β,则α∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.
其中命题正确的是
②④
(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

8、设α、β、γ为两两不重合的平面,l、m、n为两两不重合的直线,给出下列四个命题:
①若α⊥γ,β⊥γ,则α∥β;
②若m?α,n?α,m∥β,n∥β,则α∥β;
③若α∥β,l?α,则l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:
①若m?α,n?α,m∥β,n∥β,则α∥β;
②若α∥β,l?α,则l∥β;
③若α∩β=l,β∩γ=m,γ∩α=n,l∥m,则 m∥n;
④若α⊥γ,β⊥γ,则α∥β;
则其中所有正确命题的序号是
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:
①若α⊥γ,β⊥γ,则α∥β;
②若m?α,n?α,m∥β,n∥β,则α∥β;
③若α∥β,l?α,则l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.
其中正确命题是
③④
③④
 (填写序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca;
(2)设a,b,c∈(0,+∞),且a+b+c=1,求证(
1
a
-1)(
1
b
-1)(
1
c
-1)≥8

查看答案和解析>>

同步练习册答案