精英家教网 > 高中数学 > 题目详情

椭圆()过点为原点.

(1)求椭圆的方程;

(2)是否存在圆心在原点,使得该圆的任意一条切线与椭圆恒有两个交点,且?若存在,写出该圆的方程,并求出的最大值;若不存在,说明理由.

 

解析:

    

      

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网给定椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”.
(1)若椭圆C过点(
5
,0)
,且焦距为4,求“伴随圆”的方程;
(2)如果直线x+y=3
2
与椭圆C的“伴随圆”有且只有一个交点,那么请你画出动点Q(a,b)轨迹的大致图形;
(3)已知椭圆C的两个焦点分别是F1(-
2
,0)、F2
2
,0),椭圆C上一动点M1满足|
M1F1
|+|
M1F
2
|=2
3
.设点P是椭圆C的“伴随圆”上的动点,过点P作直线l1、l2使得l1、l2与椭圆C都各只有一个交点,且l1、l2分别交其“伴随圆”于点M、N.当P为“伴随圆”与y轴正半轴的交点时,求l1与l2的方程,并求线段|
MN
|
的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点O,焦点在x轴上的椭圆E过点(1,
3
2
),离心率为
1
2

(Ⅰ)求椭圆E的方程;
(Ⅱ)直线x+y+1=0与椭圆E相交于A、B(B在A上方)两点,问是否存在直线l,使l与椭圆相交于C、D(C在D上方)两点且ABCD为平行四边形,若存在,求直线l的方程与平行四边形ABCD的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点O、焦点在x轴上的椭圆C过点M(2,1),离心率为
3
2
.如图,平行于OM的直线l交椭圆C于不同的两点A,B.
(1)当直线l经过椭圆C的左焦点时,求直线l的方程;
(2)证明:直线MA,MB与x轴总围成等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)已知中心在原点,焦点在x轴上的椭圆C过点(1,
3
2
)
,离心率为
3
2
,点A为其右顶点.过点B(1,0)作直线l与椭圆C相交于E,F两点,直线AE,AF与直线x=3分别交于点M,N.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求
EM
FN
的取值范围.

查看答案和解析>>

同步练习册答案